ELECTRICITY-HEAT-GAS COOPERATIVE OPTIMAL OPERATION STRATEGY OF INTEGRATED ENERGY SYSTEM BASED ON COOPERATIVE GAME

Zhu Rong, Ren Yongfeng, Meng Qingtian, He Jinwei, Pan Yu, He Bin

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (4) : 20-29.

PDF(1679 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1679 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (4) : 20-29. DOI: 10.19912/j.0254-0096.tynxb.2022-0112
Topics on Key Technologies for Safety of Electrochemical Energy Storage Systems and Echelon Utilization of Decommissioned Power Batteries

ELECTRICITY-HEAT-GAS COOPERATIVE OPTIMAL OPERATION STRATEGY OF INTEGRATED ENERGY SYSTEM BASED ON COOPERATIVE GAME

  • Zhu Rong1, Ren Yongfeng1, Meng Qingtian2, He Jinwei3, Pan Yu1, He Bin1
Author information +
History +

Abstract

Under the background of " peak carbon dioxide emissions" and " carbon neutrality ", in order to effectively improve the energy efficiency of integrated energy system(IES), reduce carbon emissions and improve the flexibility of system operation, an optimal operation model of IES based on cooperative game is proposed. The first step is to build an IES framework and a model for the devices of P2G, carbon capture, gas turbine and thermal energy storage. Then, divide the operation subjects in the system into three parts and construct a cooperative alliance within them considering the possibility of their coordination, and illustrate how to increase the overall interests through energy complementarity. Finally, set up an IES cooperative optimal operation model, and use Shapley value to distribute the cooperative surplus according to their contributions. By the simulation analysis of an IES in Inner Mongolia region, this paper verified that the proposed strategy can evidently reduce the operating cost of the cooperative subjects and the overall cost of the cooperative alliance. It prompts the cooperation within the subjects in the alliance, improves the wind power accommodation capacity of the system, and reduces the carbon emission, prorides theoretical support for the operation of the low-carbon economy of the power systems.

Key words

integrated energy system / game theory / carbon capture / renewable energy source / power to gas / optimal scheduling

Cite this article

Download Citations
Zhu Rong, Ren Yongfeng, Meng Qingtian, He Jinwei, Pan Yu, He Bin. ELECTRICITY-HEAT-GAS COOPERATIVE OPTIMAL OPERATION STRATEGY OF INTEGRATED ENERGY SYSTEM BASED ON COOPERATIVE GAME[J]. Acta Energiae Solaris Sinica. 2022, 43(4): 20-29 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0112

References

[1] 马腾飞, 裴玮, 肖浩, 等. 基于纳什谈判理论的风-光-氢多主体能源系统合作运行方法[J]. 中国电机工程学报, 2021, 41(1): 25-39, 395.
MA T F, PEI W, XIAO H, et al. Cooperative operation method for wind-solar-hydrogen multi-agent energy system based on Nash bargaining theory[J]. Proceedings of the CSEE, 2021, 41(1): 25-39, 395.
[2] 贾伟青, 任永峰, 薛宇, 等. 基于小波包-模糊控制的混合储能平抑大型风电场功率波动[J]. 太阳能学报, 2021, 42(9): 357-363.
JIA W Q, REN Y F, XU Y, et al. Wavelet packet-fuzzy control of hybrid energy storage for power fluctuation smoothing of large wind farm[J]. Acta energiae solaris sinica, 2021, 42(9): 357-363.
[3] 田德, 陈忠雷, 邓英, 等. 考虑预测误差的综合能源系统优化调度模型[J]. 太阳能学报, 2019, 40(7): 1890-1896.
TIAN D, CHEN Z L, DENG Y, et al. Integrated energy system optimal dispatching model considering prediction errors[J]. Acta energiae solaris sinica, 2019, 40(7): 1890-1896.
[4] WANG H Y, ZHANG C H, LI K, et al. Game theory-based multi-agent capacity optimization for integrated energy systems with compressed air energy storage[J]. Energy, 2021, 221: 119777.
[5] 潘华, 梁作放, 肖雨涵, 等. 多场景下区域综合能源系统的优化运行[J]. 太阳能学报, 2021, 42(1): 484-492.
PAN H, LIANG Z F, XIAO Y H, et al. Optimal operation of regional integrated energy system under multiple scenes[J]. Acta energiae solaris sinica, 2021, 42(1): 484-492.
[6] 汤翔鹰, 胡炎, 耿琪, 等. 考虑多能灵活性的综合能源系统多时间尺度优化调度[J]. 电力系统自动化, 2021, 45(4): 81-90.
TANG X Y, HU Y, GENG Q, et al. Multi-time-scale optimal scheduling of integrated energy system considering multi-energy flexibility[J]. Automation of electric power systems, 2021, 45(4): 81-90.
[7] 何畅, 程杉, 徐建宇, 等. 基于多时间尺度和多源储能的综合能源系统能量协调优化调度[J]. 电力系统及其自动化学报, 2020, 32(2): 77-84, 97.
HE C, CHENG S, XU J Y, et al. Coordinated optimal scheduling of integrated energy system considering multi-time scale and hybrid energy storage system[J]. Proceedings of the CSU-EPSA, 2020, 32(2): 77-84, 97.
[8] 赵海彭, 苗世洪, 李超, 等. 考虑冷热电需求耦合响应特性的园区综合能源系统优化运行策略研究[J/OL]. 中国电机工程学报: 1-17[2022-01-18]. DOI: 10.13334/j.0258-8013.pcsee.201942.
ZHAO H P, MIAO S H, LI C, et al. research on optimal operation strategy for regional integrated energy system considering cold-heat-electric demand coupling response characteristics[J/OL]. Proceedings of the CSEE: 1-17 [2022-01-18]. DOI:10.13334/j.0258 -8013.pcsee.201942.
[9] 崔杨, 纪银锁, 仲悟之, 等. 基于电-热联合储能的弃风消纳调度方法[J]. 太阳能学报, 2021, 42(12): 192-199.
CUI Y, JI Y S, ZHONG W Z, et al. Dispatching method of wind power curtailment based on electric-thermal combined energy storage[J]. Acta energiae solaris sinica, 2021, 42(12): 192-199.
[10] 凌梓, 杨秀, 李莉华, 等. 含电转气多能系统的协调控制与优化调度[J]. 太阳能学报, 2020, 41(12): 9-17.
LING Z, YANG X, LI L H, et al. Coordinated control and optimal scheduling of multi energy systems with power-to-gas devices[J]. Acta energiae solaris sinica, 2020, 41(12): 9-17.
[11] 崔杨, 曾鹏, 惠鑫欣, 等. 考虑碳捕集电厂综合灵活运行方式的低碳经济调度[J]. 电网技术, 2021, 45(5): 1877-1886.
CUI Y, ZENG P, HUI X X, et al. Low-carbon economic dispatch considering the integrated flexible operation mode of carbon capture power plant[J]. Power system technology, 2021, 45(5): 1877-1886.
[12] 陈锦鹏, 胡志坚, 陈嘉滨, 等. 考虑阶梯式碳交易与供需灵活双响应的综合能源系统优化调度[J]. 高电压技术, 2021, 47(9): 3094-3106.
CHEN J P, HU Z J, CHEN J B, et al. Optimal dispatch of integrated energy system considering ladder-type carbon trading and flexible double response of supply and demand[J]. High voltage engineering, 2021, 47(9): 3094-3106.
[13] 袁桂丽, 刘骅骐, 禹建芳, 等. 含碳捕集热电机组的虚拟电厂热电联合优化调度[J/OL]. 中国电机工程学报: 1-11[2022-01-18]. http://kns.cnki.net/kcms/detail/11.2107.TM.20211104.2019.005.html.
YUAN G L, LIU Y Q, YU J F, et al. Combined heat and power optimal dispatching in virtual power plant with carbon capture cogeneration unit[J/OL]. Proceedings of the CSEE: 1-11[2022-01-18]. http://kns.cnki.net/kcms/detail/11.2107.TM.20211104.2019.005.html.
[14] 田丰, 贾燕冰, 任海泉, 等. 考虑碳捕集系统的综合能源系统“源-荷”低碳经济调度[J]. 电网技术, 2020, 44(9): 3346-3355.
TIAN F, JIA Y B, REN H Q, et al. "Source-load" low-carbon economic dispatch of integrated energy system considering carbon capture system[J]. Power system technology, 2020, 44(9): 3346-3355.
[15] 孙惠娟, 刘昀, 彭春华, 等. 计及电转气协同的含碳捕集与垃圾焚烧虚拟电厂优化调度[J]. 电网技术, 2021, 45(9): 3534-3545.
SUN H J, LIU Y, PENG C H, et al. Optimization scheduling of virtual power plant with carbon capture and waste incineration considering power-to-gas coordination[J]. Power system technology, 2021, 45(9): 3534-3545.
[16] 崔杨, 闫石, 仲悟之, 等. 含电转气的区域综合能源系统热电优化调度[J]. 电网技术, 2020, 44(11): 4254-4264.
CUI Y, YAN S, ZHONG W Z, et al. Optimal thermoelectric dispatching of regional integrated energy system with power-to-gas[J]. Power system technology, 2020, 44(11): 4254-4264.
[17] 吴福保, 刘晓峰, 孙谊媊, 等. 基于冷热电联供的多园区博弈优化策略[J]. 电力系统自动化, 2018, 42(13): 68-75.
WU F B, LIU X F, SUN Y Q, et al. Game optimization strategy for multiple parks based on combined cooling heating and power[J]. Automation of electric power systems, 2018, 42(13): 68-75.
[18] 张锴, 郭小璇, 韩帅, 等. 基于电转气反应热应用和合作博弈的电转气装置容量规划[J]. 电网技术, 2021, 45(7): 2801-2811.
ZHANG K, GUO X X, HAN S, et al. Capacity planning of power-to-gas considering reaction heat recovery and cooperative game[J]. Power system technology, 2021, 45(7): 2801-2811.
[19] CUI S, WANG Y W, SHI Y, et al. Community energy cooperation with the presence of cheating behaviors[J]. IEEE transactions on smart grid, 2020, 12(1): 561-573.
[20] LUO X, LIU Y.A multiple-coalition-based energy trading scheme of hierarchical integrated energy systems[J]. Sustainable cities and society, 2021, 64: 102518.
[21] 国家发展改革委.国家能源局关于开展分布式发电市场化交易试点的通知[EB/OL]. http://zfxxgk.nea.gov.cn/auto87/201711/t20171113_3055.htm, 2017-10-31.
National Development and Refarm commission.Notice on lauuching the pilot program of distributed generation market-based trdin[EB/OL]. http://zfxxgk.nea.gov.cn/auto87/201711/t20171113_3055.htm, 2017-10-31.
PDF(1679 KB)

Accesses

Citation

Detail

Sections
Recommended

/