MULTI-OBJECTIVE OPTIMIZATION RANKING MODEL PREDICTIVE CONTROL OF PVOTOVOLTAIC OFF-GRID SL-qZSI

Lyu Zhe, Luo Wei, Pan Yongjiu

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (3) : 475-481.

PDF(3175 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3175 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (3) : 475-481. DOI: 10.19912/j.0254-0096.tynxb.2022-0121

MULTI-OBJECTIVE OPTIMIZATION RANKING MODEL PREDICTIVE CONTROL OF PVOTOVOLTAIC OFF-GRID SL-qZSI

  • Lyu Zhe, Luo Wei, Pan Yongjiu
Author information +
History +

Abstract

The switched-inductance quasi-Z-source inverter can improve the reliability and energy conversion efficiency of photovoltaic power generation system, however, its finite control set model predictive control (FCS-MPC) has multiple control variables and difficult to adjust the weight coefficients. This paper proposes a photovoltaic off-grid switched-inductance quasi-Z-source inverter model predictive control strategy based on multi-objective optimization ranking. Firstly, the state of the next control cycle is judged based on the predicted value of inductor current, and if it is a non-through state, the cost functions of load current and capacitor voltage are calculated separately and sorted in the order from smallest to largest, and then the two sorted values are summed to obtain the sorted sum, and the switching state corresponding to the smallest sorted sum will be applied to the switching state of the next cycle of the inverter, which effectively eliminates the weighting factor of the traditional FCS-MPC strategy. Simulation analysis and experimental results show that the proposed control strategy has good steady and dynamic characteristics.

Key words

photovoltaic power / switched-inductor quasi Z-source inverter / model predictive control / weight coefficient / multi-objective optimization ranking

Cite this article

Download Citations
Lyu Zhe, Luo Wei, Pan Yongjiu. MULTI-OBJECTIVE OPTIMIZATION RANKING MODEL PREDICTIVE CONTROL OF PVOTOVOLTAIC OFF-GRID SL-qZSI[J]. Acta Energiae Solaris Sinica. 2023, 44(3): 475-481 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0121

References

[1] PENG F Z.Z-source inverter[J]. IEEE transactions on industrial electronics, 2003, 39(2): 504-510.
[2] 杨水涛, 丁新平, 张帆, 等. Z-源逆变器在光伏发电系统中的应用[J]. 中国电机工程学报, 2008, 28(17):112-118.
YANG S T, DING X P, ZHANG F, et al.Study on Z-source inverter for photovoltaic generation system[J]. Proceedings of the CSEE, 2008, 28(17): 112-118.
[3] NGUYEN M K, LIM Y C, CHO G B.Switched-inductor quasi-Z-source inverter[J]. IEEE transactions on power electronics, 2011, 26(11): 3183-3191.
[4] 陈宗祥, 蒋赢, 潘俊民, 等. 基于滑模控制的Z源逆变器在单相光伏系统中的应用[J]. 中国电机工程学报, 2008, 28(21): 33-39.
CHEN Z X, JIANG Y, PAN J M, et al.A Z-source inverter for a single-phase PV system based on sliding-mode control[J]. Proceedings of the CSEE, 2008, 28(21):33-39.
[5] 李山, 司文旭, 陈艳, 等. 基于准PR控制的隔离型准Z源单相光伏并网逆变器研究[J]. 太阳能学报, 2018, 39(11): 3081-3089.
LI S, SI W X, CHEN Y, et al.Research on isolated quasi-Z-source single phase photovoltaic grid connected inverter based on PR control[J]. Acta energiae solaris sinica, 2018, 39(11): 3081-3089.
[6] CORREA P, RODRIGUEZ J R, RIVERA M, et al.Predictive control of an indirect matrix converter[J]. IEEE transactions on industrial electronics, 2009, 56(6): 1847-1853.
[7] RODRIGUEZ J R, KAZMIERKOWSKI M P, ESPINOZA J R, et al.State of the art of finite control set model predictive control in power electronics[J]. IEEE transactions on industrial informatics, 2013, 9(2): 1003-1016.
[8] BAKEER A, ISMEIL M A, ORABI M.A powerful finite control set-model predictive control algorithm for quasi Z-source inverter[J]. IEEE transactions on industrial informatics, 2016, 12(4): 1371-1379.
[9] MOSA M, BALOG R S, ABU-RUB H.High-performance predictive control of quasi-impedance source inverter[J]. IEEE transactions on power electronics, 2017, 32(4): 3251-3262.
[10] LIU Y S, ABU-RUB H A, XUE Y S, et al. A discrete-time average model-based predictive control for a quasi-Z-source inverter[J]. IEEE transactions on industrial electronics, 2018, 65(8): 6044-6054.
[11] ZHANG Y C, ZHANG B Y, YANG H T, et al.Generalized sequential model predictive control of IM drives with field-weakening ability[J]. IEEE transactions on power electronics, 2019, 34(9): 8944-8955.
[12] NORAMBUENA M, RODRIGUEZ J, ZHANG Z B,et al.A very simple strategy for high-quality performance of AC machines using model predictive control[J]. IEEE transactions on power electronics, 2019, 34(1): 794-800.
[13] 吴春, 杨佳磊, 陈强. 准Z源逆变器级联模型预测控制[J]. 中国电机工程学报, 2021, 41(12): 4286-4297.
WU C, YANG J L, CHEN Q.Sequential-model predictive control for quasi-Z-source inverter[J]. Proceedings of the CSEE, 2021, 41(12): 4286-4297.
[14] ROJAS C A, RODRIGUEZ J R, VILLARROEL F,et al.Predictive torque and flux control without weighting factors[J]. IEEE transactions on industrial electronics, 2013, 60(2): 681-690.
[15] 夏超英, 田聪颖, 张耀华, 等. 基于多目标排序的无刷双馈电机预测控制[J]. 太阳能学报, 2020, 41(6): 1-7.
XIA C Y, TIAN C Y, ZHANG Y H,et al.Predictive control of method BDFM based on multi-objective ranking[J]. Acta energiae solaris sinica, 2020, 41(6): 1-7.
PDF(3175 KB)

Accesses

Citation

Detail

Sections
Recommended

/