RESEARCH OF VIBRATION CONTROL OF BOTTOM-FIXED OFFSHORE WIND TURBINES USING TUNED LIQUID COLUMN DAMPER WITH PILE FOUNDATION FLEXIBILITIES

Han Dongdong, Wang Wenhua, Li Xin, Su Xiaohui

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (6) : 398-405.

PDF(1907 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1907 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (6) : 398-405. DOI: 10.19912/j.0254-0096.tynxb.2022-0125

RESEARCH OF VIBRATION CONTROL OF BOTTOM-FIXED OFFSHORE WIND TURBINES USING TUNED LIQUID COLUMN DAMPER WITH PILE FOUNDATION FLEXIBILITIES

  • Han Dongdong1,2, Wang Wenhua1,2, Li Xin1,2, Su Xiaohui1
Author information +
History +

Abstract

The linear coupled spring is used to simulate the flexibilities of wind turbine pile foundations. Based on the fully coupled analysis theories in the time domain and linearized spring of pile foundation at the mudline, the coupled numerical model of the offshore wind turbine(OWT) with a tuned liquid column damper(TLCD) is established. Then, the vibration control of bottom-fixed OWT under combined winds and waves are carried out. The mitigation effects of TLCD on the bottom-fixed OWT are discussed, and the vibration reduction mechanisms are revealed according to the reduced responses in the frequency domain. It is shown that the free decayed motions and coupled structural responses of OWT are effectively alleviated by the designed TLCD with the designated support structural first frequency. Meanwhile, the differences in the mitigation effects among the selected load cases are verified, and the influence of interactions between the environmental loads and OWT responses are studied. Further, the applicability and effectiveness of the designed TLCD is evaluated based on the reductions of the OWT coupled responses.

Key words

offshore wind turbines / dynamic response / vibration control / tuned liquid column damper / fully coupled model

Cite this article

Download Citations
Han Dongdong, Wang Wenhua, Li Xin, Su Xiaohui. RESEARCH OF VIBRATION CONTROL OF BOTTOM-FIXED OFFSHORE WIND TURBINES USING TUNED LIQUID COLUMN DAMPER WITH PILE FOUNDATION FLEXIBILITIES[J]. Acta Energiae Solaris Sinica. 2023, 44(6): 398-405 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0125

References

[1] LACKNER M A, ROTEA M A.Passive structural control of offshore wind turbines[J]. Wind energy, 2011, 14(3): 373-388.
[2] LACKNER M A, ROTEA M A.Structural control of floating wind turbines[J]. Mechatronics, 2011, 21(4): 704-719.
[3] LI J, ZHANG Z L, CHEN J B.Experimental study on vibration control of offshore wind turbines using a ball vibration absorber[J]. Energy and power engineering, 2012, 4(3): 153.
[4] SI Y L, KARIMI H R, GAO H J.Modelling and optimization of a passive structural control design for a spar-type floating wind turbine[J]. Engineering structures, 2014, 69: 168-182.
[5] SI Y L, KARIMI H R, GAO H J.Parameter tuning for nacelle-based passive structural control of a spar-type floating wind turbine[C]//Conference of the IEEE Industrial Electronics Society, Dallas, USA, 2014.
[6] 杨佳佳, 贺尔铭, 姚文旭, 等. 抑制海上浮式风力机振动的TMD限位策略研究[J]. 振动与冲击, 2020, 39(15): 18-24, 57.
YANG J J, HE E M, YAO W X, et al.TMD limited position strategy for vibration suppression of floating offshore wind turbines[J]. Journal of vibration and shock, 2020, 39(15): 18-24,57.
[7] 黄致谦, 丁勤卫, 李春. 三种漂浮式风力机调谐质量阻尼器稳定性控制研究[J]. 振动与冲击, 2019, 38(21): 112-119,147.
HUANG Z Q, DING Q W, LI C.TMD’S on stability control effect of three kinds of floating wind turbine[J]. Journal of vibration and shock, 2019, 38(21): 112-119, 147.
[8] 丁勤卫, 郝文星, 李春, 等. 漂浮式风力机结构动力学响应TMD控制及其参数优化研究[J]. 振动与冲击, 2018, 37(23): 69-78.
DING Q W, HAO W X, LI C, et al.TMD control and its parametric optimization of structure al dynamic response of afloating wind turbine[J]. Journal of vibration and shock, 2018, 37(23): 69-78.
[9] HEMMATI A, OTERKUS E, KHORASANCHI M.Vibration suppression of offshore wind turbine foundations using tuned liquid column dampers and tuned mass dampers[J]. Ocean engineering, 2019, 172: 286-295.
[10] COLWELL S, BASU B.Tuned liquid column dampers in offshore wind turbines for structural control[J]. Engineering structures, 2009, 31(2): 358-368.
[11] CHEN J B, LIU Y K, BAI X Y.Shaking table test and numerical analysis of offshore wind turbine tower systems controlled by TLCD[J]. Earthquake engineering and engineering vibration, 2015, 14(1): 55-75.
[12] BUCKLEY T, WATSON P, CAHILL P, et al.Mitigating the structural vibrations of wind turbines using tuned liquid column damper considering soil-structure interaction[J]. Renewable energy, 2018, 120: 322-341.
[13] HA M H, CHEONG C.Pitch motion mitigation of spar-type floating substructure for offshore wind turbine using multilayer tuned liquid damper[J]. Ocean engineering, 2016, 116: 157-164.
[14] ZHANG Z L, STAINO A, BASU B, et al.Performance evaluation of full-scale tuned liquid dampers(TLDs) for vibration control of large wind turbines using real-time hybrid testing[J]. Engineering structures, 2016, 126: 417-431.
[15] PARK S, GLADE M, LACKNER M A.Multi-objective optimization of orthogonal TLCDs for reducing fatigue and extreme loads of a floating offshore wind turbine[J]. Engineering structures, 2020, 209: 110260.
[16] JONKMAN J, MUSIAL W.Subtask 2 the offshore code comparison collaboration (OC3) IEA wind task 23 offshore wind technology and deployment[R]. NREL/TP-5000-4819, 2010.
[17] PASSON P.Memorandum derivation and description of the soil-pile-interaction models[R]. IEA-Annex XXIIII Subtask, 2006.
[18] BIR G.Blades and towers modal analysis code (BModes):verification of blade modal analysis capability[C]//The 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, USA, 2009: 5-8.
[19] GAO H, KWOK K, SAMALI B.Optimization of tuned liquid column dampers[J]. Engineering structures, 1997, 19(6): 476-486.
[20] IEC 61400-3, Wind turbines, part 3: design requirements for offshore wind turbines[S].
[21] FOLEY J T, GUTOWSKI T G.TurbSim: reliability-based wind turbine simulator[C]//IEEE International Symposium on Electronics and the Environment, San Francisco, USA, 2008: 19-22.
[22] KAIMAL J C, WYNGAARD J C, IZUMI Y, et al.Spectral characteristics of surface-layer turbulence[J]. Quarterly journal of the royal meteorological society, 1972, 98(417): 563-589.
[23] HARTOG D.Mechanical vibrations[M]. New York: Dover Publications, 1985.
PDF(1907 KB)

Accesses

Citation

Detail

Sections
Recommended

/