SHORT-TERM WIND POWER PROBABILITY DENSITY PREDICTION METHOD BASED ON MULTI-LEVEL SEMANTIC ATTENTION MECHANISM

Qi Fangzhong, Zhuo Kexiang, Cao Jian

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (11) : 140-147.

PDF(2202 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2202 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (11) : 140-147. DOI: 10.19912/j.0254-0096.tynxb.2022-0138

SHORT-TERM WIND POWER PROBABILITY DENSITY PREDICTION METHOD BASED ON MULTI-LEVEL SEMANTIC ATTENTION MECHANISM

  • Qi Fangzhong, Zhuo Kexiang, Cao Jian
Author information +
History +

Abstract

Obtaining short-term probabilistic information of future wind power will improve the comprehensive energy dispatching of power grid. Therefore, a method of short-term wind power probability density prediction based on multi-level semantic attention mechanism is proposed. In order to obtain as much coding information as possible at the semantic level, Recurrent Highway Network (RHN) is introduced at the encoding stage. The underlying association information of input features is extracted to the maximum extent through the deep RHN network structure. A multi-level semantic attention mechanism is designed to integrate local attention vector under different semantic layers, which further strengthen the expression ability of coding feature vector. Combining the output of network with quantile regression and kernel density estimation methods, the prediction results and continuous probability density distribution of future short-term wind power are obtained. The experimental results show that the proposed method of short-term wind probability density prediction is superior to other comparison models, in terms of the accuracy of prediction value and the distribution of prediction results with uncertainty.

Key words

wind power / deep learning / probability density / quantile regression / recurrent highway network

Cite this article

Download Citations
Qi Fangzhong, Zhuo Kexiang, Cao Jian. SHORT-TERM WIND POWER PROBABILITY DENSITY PREDICTION METHOD BASED ON MULTI-LEVEL SEMANTIC ATTENTION MECHANISM[J]. Acta Energiae Solaris Sinica. 2022, 43(11): 140-147 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0138

References

[1] 张博, 孙旭东, 刘颖, 等. 能源新技术新兴产业发展动态与2035战略对策[J]. 中国工程科学, 2020, 22(2): 1-160.
ZHANG B, SUN X D, LIU Y, et al.Development trends and strategic countermeasures of China’s emerging energy technology industry toward 2035[J]. Strategic study of CAE, 2020, 22(2): 1-160.
[2] 缪乐颖, 丁明, 车建峰, 等. 基于功率波动过程的风电功率短期预测及误差修正[J]. 电力系统自动化, 2019, 43(3): 2-12.
MIAO L Y, DING M, CHE J F, et al.Short-term forecasting and error corretion of wind power based on power fluctuation process[J]. Automation of electric power systems, 2019, 43(3): 2-12.
[3] KOU P, GAO F, GUAN X H.Stochastic predictive control of battery energy storage for wind farm dispatching: using probabilistic wind power forecasts[J]. Renewable energy, 2015, 80: 286-300.
[4] LUJANO-ROJAS J M, OSORIO G J, MATIAS J C O, et al. A heuristic methodology to economic dispatch problem incorporating renewable power forecasting error and system reliability[J]. Renewable energy, 2016, 87: 731-743.
[5] FOLEY A M, LEAHY P G, MARVUGLIA A, et al.Current methods and advances in forecasting of wind power generation[J]. Renewable energy, 2012, 37(1): 1-8.
[6] GIORGI M, FICARELLA A, TARANTINO M.Error analysis of short term wind power prediction models[J]. Applied energy, 2011, 88(4): 1298-1311.
[7] YANG M, CHEN X X, DU J, et al.Ultra-short-term multi-step wind power prediction based on improved EMD and reconstruction method using run-length analysis[J]. IEEE access, 2018(6): 31908-31917.
[8] 陈昊, 张建忠, 许超, 等. 基于多重离群点平滑转换自回归模型的短期风电功率预测[J]. 电力系统保护与控制, 2019, 47(1): 73-79.
CHEN H, ZHANG J Z, XU C, et al.Short-term wind power forecast based on MOSTAR model[J]. Power system protection and control, 2019, 47(1): 73-79.
[9] 姜贵敏, 陈志军, 李笑竹, 等. 基于EEMD-ACS-LSSVM的短期风电功率预测[J]. 太阳能学报, 2020, 41(5): 83-90.
JIANG G M, CHEN Z J, LI X Z, et al.Short-term prediction of wind power based on EEMD-ACS-LSSVM[J]. Acta energiae solaris sinica, 2020, 41(5): 83-90.
[10] 刘家敏, 李聪睿, 周志浩, 等. 基于WD-CS-SVM的超短期风电功率组合预测[J]. 电力工程技术, 2019, 38(5): 24-29.
LIU J M, LI C R, ZHOU Z H, et al.Combination ultra-short-term prediction of wind power based on WD-CS-SVM[J]. Electric power engineering technology, 2019, 38(5): 24-29.
[11] 范高锋, 王伟胜, 刘纯, 等. 基于人工神经网络的风电功率预测[J]. 中国机电工程学报, 2008, 28(34): 118-123.
FAN G F, WANG W S, LIU C, et al.Wind power prediction based on artificial neural network[J]. Proceeding of the CSEE, 2008, 28(34): 118-123.
[12] 殷豪, 欧祖宏, 陈德, 等. 基于二次模式分解和级联式深度学习的超短期风电功率预测[J]. 电网技术, 2020, 44(2): 445-453.
YIN H, OU Z H, CHEN D, et al.Ultra-short-term wind power prediction based on two-layer mode decomposition and cascaded deep learning[J]. Power system technology, 2020, 44(2): 445-453.
[13] 薛阳, 王琳, 王舒, 等. 一种结合CNN和GRU网络的超短期风电预测模型[J]. 可再生能源, 2019, 37(3): 456-462.
XUE Y, WANG L, WANG S, et al.An ultra-short-term wind power forecasting model combined with CNN and GRU networks[J]. Renewable energy resources, 2019, 37(3): 456-462.
[14] 贾睿, 杨国华, 郑豪丰, 等. 基于自适应权重的CNN-LSTM&GRU组合风电功率预测方法[J]. 中国电力, 2022, 55(5): 47-56.
JIA R, YANG G H, ZHENG H F, et al.Combined wind power prediction method based on CNN-LSTM & GRU of adaptive weight[J]. Electric power, 2022, 55(5): 47-56.
[15] 赵征, 周孜钰, 南宏钢. 基于VMD的CNN-BiLSTM超短期风电功率多步区间预测[J]. 华北电力大学学报(自然科学版), 2022, 49(4): 91-97.
ZHAO Z, ZHOU Z Y, NAN H G.Research on multi-step interval forecasting of CNN-BiLSTM ultra-short-term wind power based on VMD[J]. Journal of North China Electric Power University(Natural Science Editiion), 2022, 49(4): 91-97.
[16] 赵兵, 王增平, 纪维佳, 等. 基于注意力机制的CNN-GRU短期电力负荷预测方法[J]. 电网技术, 2019, 43(12): 4370-4376.
ZHAO B, WANG Z P, JI W J, et al.A short-term power load forecastrng method based on attention mechanism of CNN-GRV[J]. Power system technology, 2019, 43(12): 4370-4376.
[17] 胡枫, 吴义熔, 董方敏, 等. 高速简单循环单元网络[J]. 控制与决策, 2022, 37(2): 493-498.
HU F, WU Y R, DONG F M, et al.Highway-simple recurrent unit network[J]. Control and decision, 2022, 37(2): 493-498.
[18] ZILLY J G, SRIVASTAVA R K, KOUTNÍK J, et al. Recurrent highway networks[C]//Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 2017.
[19] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 2016: 770-778.
[20] 薛禹胜, 雷兴, 薛峰, 等. 关于风电不确定性对电力系统影响的评述[J] . 中国电机工程学报, 2014, 34(29): 5029-5040.
XUE Y S, LEI X, XUE F, et al.A review on impacts of wind power uncertainties on power systems[J]. Proceedings of the CSEE, 2014, 34(29): 5029-5040.
[21] 杨茂, 代博祉, 刘蕾. 风电功率概率预测研究综述[J]. 东北电力大学学报, 2020, 40(2): 1-6.
YANG M, DAI B Z, LIU L.A review of wind power probabilistic prediction[J]. Journal of Northeast Electric Power University, 2020, 40(2): 1-6.
[22] KOENKER R, BASSETT G.Regression quantiles[J]. Econometrica, 1978, 46(1): 33-50.
[23] 许启发, 蒋翠侠. 分位数局部调整模型及应用[J]. 数量经济技术经济研究, 2011, 28(8): 115-133.
XU Q F,JIANG C X.Quantile partial adjustment model and its application[J]. Journal of quantitative & technological economics, 2011, 28(8): 115-133.
[24] 吴问足, 乔颖, 鲁宗相, 等. 风电功率概率预测方法及展望[J]. 电力系统自动化, 2017, 41(18): 167-175.
WU W Z, QIAO Y, LU Z X, et al.Quantile partial adjustment model and its application[J]. Automation of electric power systems, 2017, 41(18): 167-175.
PDF(2202 KB)

Accesses

Citation

Detail

Sections
Recommended

/