EXPERIMENTAL STUDY ON R290 DIRECT-EXPANSION SOLAR-ASSISTED HEAT PUMP HEATING SYSTEM

Kong Xiangqiang, Zhang Peng, Xu Xian, Yan Xunzheng, Yue Zhenwei

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (6) : 323-329.

PDF(1929 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1929 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (6) : 323-329. DOI: 10.19912/j.0254-0096.tynxb.2022-0139

EXPERIMENTAL STUDY ON R290 DIRECT-EXPANSION SOLAR-ASSISTED HEAT PUMP HEATING SYSTEM

  • Kong Xiangqiang, Zhang Peng, Xu Xian, Yan Xunzheng, Yue Zhenwei
Author information +
History +

Abstract

In order to analyze the actual operation characteristics of direct-expansion solar-assisted heat pump for radiant floor heating system in Northern Cold Region, a direct-expansion solar-assisted heat pump system using propane (R290) as refrigerant is designed and built, in which the effect of environmental parameters on the thermal performance of the system under different operating conditions in winter is analyzed. The experimental results show that the system can realize the stability of indoor heating. During the experiments, the average room temperature is kept between 16.1 and 20.8 ℃, the coefficient of performance (COP) of the heat pump is kept between 2.57 and 4.3, and the COP of the heating system is kept between 2.24 and 3.98. Furthermore, when the solar irradiation intensity increases by 50 W/m2, the COP of the heat pump increases by 7.1%. When the ambient temperature increases by 1 ℃, the COP of the heat pump increases by 6.7%. In addition, the solar radiation intensity has significant influence on the opening of electronic expansion valve and refrigerant mass flow rate of the heat pump system. When the final water temperature in the hot water storage tank increases from 45 to 55 ℃, the COP of the heat pump decreases by 12.2%, while the COP of the heating system reaches the maximum of 3.37 at the final water temperature of 50 ℃.

Key words

solar energy / heat pump system / propane / coefficient of performance / radiant floor heating / experiment

Cite this article

Download Citations
Kong Xiangqiang, Zhang Peng, Xu Xian, Yan Xunzheng, Yue Zhenwei. EXPERIMENTAL STUDY ON R290 DIRECT-EXPANSION SOLAR-ASSISTED HEAT PUMP HEATING SYSTEM[J]. Acta Energiae Solaris Sinica. 2023, 44(6): 323-329 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0139

References

[1] 马坤茹, 李雪峰, 李思琦, 等. 新型太阳能/空气能直膨式热泵与空气源热泵供热性能对比[J]. 化工学报, 2020, 71(增刊1): 375-381.
MA K R, LI X F, LI S Q, et al.Contrastive research of heating performance of direct expansion solar/air assisted heat pump system and air-source heat pump[J]. CIECS journal, 2020, 71(S1): 375-381.
[2] BELLOS E, TZIVANIDIS C.Energetic and financial sustainability of solar assisted heat pump heating systems in Europe[J]. Sustainable cities and society, 2017, 33: 70-84.
[3] 蒋绿林, 蔡佳霖, 吕长宁, 等. 温室大棚多热源热泵供暖系统的研究[J]. 太阳能学报, 2019, 40(10): 2748-2754.
JIANG L L, CAI J L, LYU C N, et al.Study on heating system with multi-source heat pump for greenhouse[J]. Acta energiae solaris sinica, 2019, 40(10): 2748-2754.
[4] 魏毅立, 王洪明. 独立式太阳能-空气源热泵热风供暖系统的设计[J]. 热能动力工程, 2018, 33(7): 128-134.
WEI Y L, WANG H M.Design of independent heating system with solar and air source heat pump[J]. Journal of engineering for thermal energy and power, 2018, 33(7): 128-134.
[5] 季杰, 赵方亮, 黄文竹, 等. 直膨式太阳能热泵制热性能的对比研究[J]. 太阳能学报, 2016, 37(10): 2578-2584.
JI J, ZHAO F L, HUANG W Z, et al.Comparative research of heating performance of direct-expansion solar-assisted heat pump[J]. Acta energiae solaris sinica, 2016, 37(10): 2578-2584.
[6] HUANG W Z, ZHANG T, JI J, et al.Numerical study and experimental validation of a direct-expansion solar-assisted heat pump for space heating under frosting conditions[J]. Energy and buildings, 2019, 185: 224-238.
[7] ELAMIN M, SAFFA R, SIDDIG O.Low-temperature solar-plate-assisted heat pump: a developed design for domestic applications in cold climate[J]. International journal of refrigeration, 2017, 81: 134-150.
[8] 肖庭庭, 李征涛, 董浩, 等. R290替代R22的解决方案综述及展望[J]. 流体机械, 2015, 43(3): 75-82.
XIAO T T, LI Z T, DONG H, et al.Overview and prospect of solution to R290 as a substitute for R22[J]. Fluid machinery, 2015, 43(3): 75-82.
[9] GE F G, WANG F, ZHONG J F, et al.Experimental research on the performance of the commercial air conditioning system with microchannel condenser[J]. Chinese journal of refrigeration technology, 2014, 34: 16-19.
[10] ZHOU W J, GAN Z H.A potential approach for reducing the R290 charge in air conditioners and heat pumps[J]. International journal of refrigeration, 2019, 101: 47-55.
[11] PAVEL M, RAHMATOLLAH K.The role of environmental metrics (GWP, TEWI, LCCP) in the selection of low GWP refrigerant[J]. Energy procedia, 2014, 61: 2460-2463.
[12] KONG X Q, YANG Y M, ZHANG M Y, et al.Experimental investigation on a direct-expansion solar-assisted heat pump water heater using R290 with micro-channel heat transfer technology during the winter period[J]. International journal of refrigeration, 2020, 113: 38-48.
[13] 孔祥强, 董山东, 姜开林, 等. 基于电子膨胀阀开度的直膨式太阳能热泵过热度智能控制[J]. 农业工程学报, 2018, 34(12): 230-235.
KONG X Q, DONG S D, JIANG K L, et al.Intelligent control of degree of superheat for direct-expansion solar-assisted heat pump based on electronic expansion valve opening[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(12): 230-235.
[14] 孔祥强, 李俊枭, 杨允国, 等. R290直膨式太阳能热泵系统工质分布和迁移特性模拟[J]. 太阳能学报, 2016, 37(10): 2585-2592.
KONG X Q, LI J X, YANG Y G, et al.Distribution and migration characteristics simulation of working fluid R290 of direct-expansion solar-assisted heat pump system[J]. Acta energiae solaris sinica, 2016, 37(10): 2585-2592.
[15] KONG X Q, ZHANG M Y, YANG Y M, et al.Comparative experimental analysis of direct-expansion solar-assisted heat pump water heaters using R134a and R290[J]. Solar energy, 2020, 203: 187-196.
[16] KONG X Q, MA S L, MA T D, et al.Mass flow rate prediction of direct-expansion solar-assisted heat pump using R290 based on ANN model[J]. Solar energy, 2021, 215: 375-387.
PDF(1929 KB)

Accesses

Citation

Detail

Sections
Recommended

/