RESEARCH OF COMBINED FORECASTING METHOD OF SHORT-TERM PHOTOVOLTAIC POWER ON TRANSITIVE CLOSURE BASED

Li Wei, Wang Xinpeng, Xu Ye, Wang Xu, Ma Wenjing

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (6) : 265-274.

PDF(1750 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1750 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (6) : 265-274. DOI: 10.19912/j.0254-0096.tynxb.2022-0158

RESEARCH OF COMBINED FORECASTING METHOD OF SHORT-TERM PHOTOVOLTAIC POWER ON TRANSITIVE CLOSURE BASED

  • Li Wei1, Wang Xinpeng1, Xu Ye1, Wang Xu1, Ma Wenjing2
Author information +
History +

Abstract

In order to effectively improve the prediction accuracy of short-term photovoltaic power generation and ensure the stable operation of the power grid, this study uses the Pearson Correlation Coefficient (PCC) method to extract relevant meteorological elements and adopts the transitive closure method to determine the similar days. Combining ARIMA time series and BP neural network, two combined prediction models of PCC-transitive closure-ARIMA and PCC-transitive closure-BP are constructed, and used to solve the output prediction problem of a photovoltaic power station in Binchuan, Yunnan. The comparison results demonstrate that, (i) compared with single model, the prediction accuracy of two combination models is improved significantly, where the combined model based on BP neural network has the better performance, with an average prediction accuracy of 91.19%; (ii) ARIMA model is suitable to describe the fluctuation and variation characteristics of photovoltaic output in the period of high-level electricity output ; correspondingly, BP model owns more adjust and correct capability under unfavorable meteorological condition.

Key words

photovoltaic power / prediction model / factor analysis / Pearson correlation coefficient / transitive closure / ARIMA / BP neural network

Cite this article

Download Citations
Li Wei, Wang Xinpeng, Xu Ye, Wang Xu, Ma Wenjing. RESEARCH OF COMBINED FORECASTING METHOD OF SHORT-TERM PHOTOVOLTAIC POWER ON TRANSITIVE CLOSURE BASED[J]. Acta Energiae Solaris Sinica. 2023, 44(6): 265-274 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0158

References

[1] WAN C, ZHAO J, SONG Y H, et al.Photovoltaic and solar power forecasting for smart grid energy management[J]. CSEE journal of power and energy systems, 2015, 1(4): 38-46.
[2] 王育飞, 付玉超, 孙路, 等. 基于混沌-RBF神经网络的光伏发电功率超短期预测模型[J]. 电网技术, 2018, 42(4): 1110-1116.
WANG Y F, FU Y C, SUN L, et al.Ultra-short term prediction model of photovoltaic output power based on chaos-rbf neural network[J]. Power system technology, 2018, 42(4): 1110-1116.
[3] DAS U K, TEY K S, SEYEDMAHMOUDIAN M, et al.Forecasting of photovoltaic power generation and model optimization: a review[J]. Renewable and sustainable energy reviews, 2018, 81: 912-928.
[4] 吴硕. 光伏发电系统功率预测方法研究综述[J]. 热能动力工程, 2021, 36(8): 1-7.
WU S.Review of power forecasting methods of photovoltaic power generation system[J]. Thermal power engineering, 2021, 36(8): 1-7.
[5] NB/T 32031—2016, 光伏发电功率预测系统功能规范[S].
NB/T 32031—2016, Function specification of PV power forecasting system[S].
[6] 舒胜, 谢应明, 杨文宇, 等. 光伏发电预测方法研究进展[J]. 热能动力程, 2020, 35(11): 1-11.
SHU S, XIE Y M, YANG W Y, et al.A review of photovoltaic power generation forecasting methods[J]. Thermal power engineering, 2020, 35(11): 1-11.
[7] HAN S, QIAO Y H, YAN J, et al.Mid-to-long term wind and photovoltaic power generation prediction based on copula function and long short term memory network[J]. Applied energy, 2019, 239: 181-191.
[8] LI L L, WEN S Y, TSENG M L,et al.Renewable energy prediction:a novel short-term prediction model of photovoltaic output power[J] .Journal of cleaner production, 2019, 228: 359-375.
[9] 李秉晨, 于惠钧, 刘靖宇. 基于Kmeans和CEEMD-PE-LSTM的短期光伏发电功率预测[J]. 水电能源科学, 2021, 39(4): 204-208.
LI B C, YU H J, LIU J Y.Prediction of short-term photovoltaic power generation based on kmeans and CEEMD-PE-LSTM[J]. Water resources and power, 2021, 39(4): 204-208.
[10] 赵滨滨, 王莹, 王彬, 等. 基于ARIMA时间序列的分布式光伏系统输出功率预测方法研究[J]. 可再生能源, 2019, 37(6): 820-823.
ZHAO B B, WANG Y, WANG B, et al.Photovoltaic power prediction in distribution network based on ARIMA model time serie[J]. Renewable energy resources, 2019, 37(6): 820-823.
[11] 张晓宇. 模糊聚类在优化决策中的应用[D]. 成都: 西南交通大学, 2016.
ZHANG X Y.The appliccation of fuzzy clustering in the optimization decision[D]. Chengdu: Southwest Jiaotong University, 2016.
[12] 陈钉均, 孙运豪, 李俊捷, 等. 重大疫情下铁路应急救援能力评估指标体系构建[J]. 交通运输工程学报, 2020, 20(3): 129-138.
CHEN D J, SHUN Y H, LI J J, et al.Construction of evaluation index system for emergency rescue capacity of rail transit under serious epidemic situation[J]. Journal of traffic and transportation engineering, 2020, 20(3): 129-138.
[13] 王振东. 基于模糊聚类的铁路物流园区规划研究[D]. 北京: 中国铁道科学研究院, 2019.
WANG Z D.Research on railway logistics park planning based on fuzzy clustering[D]. Beijing: China Academy of Railway Sciences, 2019.
[14] 李文, 邓升, 段妍, 等. 时间序列预测与深度学习:文献综述与应用实例[J]. 计算机应用与软件, 2020, 37(10): 64-70, 84.
LI W, DENG S, DUAN Y, et al.Time series forecasting and deep learning:literature review and empirical example[J]. Computer applications and software, 2020, 37(10): 64-70, 84.
[15] 陈春俊, 杨露, 何智颖, 等. ARIMA-BP神经网络高速列车隧道压力波预测模型研究[J]. 中国测试, 2021, 47(10): 80-86.
CHEN C J, YANG L, HE Z Y, et al.Research on tunnel pressure wave prediction model of high-speed train based on ARIMA-BP neural network[J]. China measurement & testing technology, 2021, 47(10): 80-86.
[16] 张凌浩, 张明, 嵇文路, 等. 基于灰色关联理论和BP神经网络的分布式光伏电站运维数据虚拟采集方法[J]. 电力建设, 2021, 42(1): 125-131.
ZHANG L H, ZHANG M, JI W L, et al.Virtual acquisition method for operation data of distributed PV applying the mixture of grey relational theory and BP neural work[J]. Electric power construction, 2021, 42(1): 125-131.
[17] 高大启. 有教师的线性基本函数前向三层神经网络结构研究[J]. 计算机学报, 1998, 21(1): 80-86.
GAO D Q.On structures of supervised linear basis function feedforward three-layered neural networks[J]. Chinese journal of computers, 1998, 21(1): 80-86.
[18] 张雨金, 杨凌帆, 葛双冶, 等. 基于Kmeans-SVM的短期光伏发电功率预测[J]. 电力系统保护与控制, 2018, 46(21): 118-124.
ZHANG Y J, YNAG L F, GE S Z, et al.Short-term photovoltaic power forecasting based on Kmeans algorithm and support vector machine[J]. Power system protection and control, 2018, 46(21): 118-124.
[19] 张金金, 张倩, 马愿, 等. 模糊聚类-Elman神经网络短期光伏发电预测模型[J]. 电测与仪表, 2020, 57(12): 46-51.
ZHANG J J, ZHANG Q, MA Y, et al.Fuzzy clustering-Elman neural network model for short-term photovoltaic power generation prediction[J]. Electricity and instrumentation, 2020, 57(12): 46-51.
[20] HU W, ZHANG X Y, ZHU L J, et al.Short-term photovoltaic power prediction based on similar days and improved SOA-DBN model[J]. IEEE access, 2021, 9(1): 1958-1971.
PDF(1750 KB)

Accesses

Citation

Detail

Sections
Recommended

/