PHOTOVOLTAIC POWER COMBINATION FORECASTING BASED ON CLIMATE SIMILARITY AND SSA-CNN-LSTM

Wang Xiaoxia, Yu Min, Ji Ming, Geng Quanfeng

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (6) : 275-283.

PDF(1973 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1973 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (6) : 275-283. DOI: 10.19912/j.0254-0096.tynxb.2022-0161

PHOTOVOLTAIC POWER COMBINATION FORECASTING BASED ON CLIMATE SIMILARITY AND SSA-CNN-LSTM

  • Wang Xiaoxia1, Yu Min1, Ji Ming2, Geng Quanfeng2
Author information +
History +

Abstract

Aiming at the problem that the forecasting accuracy of photovoltaic power may be affected by the lack of high-resolution meteorological data, a high-resolution photovoltaic power combination forecasting model is proposed, which combines climate similarity with singular spectrum analysis (SSA), convolutional neural networks(CNN) and long short-term memory(LSTM). SSA is employed to decompose the photovoltaic sequence into different subsequences, and CNN-LSTM based on day ahead prediction model is established to capture the continuous characteristics of photovoltaic output. Moreover, the climate similarity is used to select similar days from low-resolution meteorological data to achieve high-resolution photovoltaic output prediction. Finally, the grey correlation analysis is utilized to obtain the combination weights to get the final prediction results. The simulation results show that the combined prediction model can effectively improve the prediction results of high-resolution photovoltaic power, and obtain high prediction accuracy.

Key words

photovoltaic power / forecasting / neural network / high time resolution / similarity analysis / singular spectrum analysis

Cite this article

Download Citations
Wang Xiaoxia, Yu Min, Ji Ming, Geng Quanfeng. PHOTOVOLTAIC POWER COMBINATION FORECASTING BASED ON CLIMATE SIMILARITY AND SSA-CNN-LSTM[J]. Acta Energiae Solaris Sinica. 2023, 44(6): 275-283 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0161

References

[1] LIU X H, GENG C, XIE S H, et al.Day ahead thermal-photovoltaic economic dispatch considering uncertainty of photovoltaic power generation[J]. Journal of system simulation, 2022, 34(8): 1874-1884.
[2] 王飞, 米增强, 杨奇逊, 等. 基于神经网络与关联数据的光伏电站发电功率预测方法[J]. 太阳能学报, 2012, 33(7): 1172-1177.
WANG F, MI Z Q, YANG Q X, et al.Power forecasting approach of PV plant based on ANN and relevant data[J]. Acta energiae solaris sinica, 2012, 33(7): 1172-1177.
[3] 李芬, 李春阳, 糜强, 等. 基于GRA-BPNN时变权重的光伏短期出力组合预测[J]. 可再生能源, 2018, 36(11): 1605-1611.
LI F, LI C Y, MI Q, et al.The time-varying weight ensemble forecasting of short-term photovoltaic power based on GRA-BPNN[J]. Renewable energy resources, 2018, 36(11): 1605-1611.
[4] ZHANG X M, LI Y, LU S Y, et al.A solar time based analog ensemble method for regional solar power forecasting[J]. IEEE transactions on sustainable energy, 2019, 10(1): 268-279.
[5] 张娜, 葛磊蛟. 基于SOA优化的光伏短期出力区间组合预测[J]. 太阳能学报, 2021, 42(5): 252-259.
ZHANG N, GE L J.Photovoltaic system short-term power interval hybrid forecasting method based on seeker optimization algorithm[J]. Acta energiae solaris sinica, 2021, 42(5): 252-259.
[6] WANG K J, QI X X, LIU H D.A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network[J]. Applied energy, 2019, 251:113315.
[7] WANG K J, QI X X, LIU H D.Photovoltaic power forecasting based LSTM-convolutional network[J]. Energy, 2019, 189: 116225.
[8] RAMSAMI P, OREE V.A hybrid method for forecasting the energy output of photovoltaic systems[J]. Energy conversion and management, 2015, 95: 406-413.
[9] 陈涛, 王艳, 纪志成. 基于经验小波变换的光伏功率组合预测模型[J]. 系统仿真学报, 2021, 33(11): 2627-2635.
CHEN T, WANG Y, JI Z C.Combination forecasting model of photovoltaic power based on empirical wavelet transform[J]. Journal of system simulation, 2021, 33(11): 2627-2635.
[10] MANJILI Y S, VEGA R, JAMSHIDI M M.Data-Analytic-Based adaptive solar energy forecasting framework[J]. IEEE systems journal, 2018,12(1): 285-296.
[11] 黄雨薇, 彭道刚, 姚峻, 等. 基于SSA和K均值的TD-BP神经网络超短期光伏功率预测[J]. 太阳能学报, 2021, 42(4): 229-238.
HUANG Y W, PENG D G, YAO J, et al.Ultra-short-team photovoltaic power forecast of TD-BP neural network based on SSA and K-means[J]. Acta energiae solaris sinica, 2021, 42(4): 229-238.
[12] 冷亚军, 吴宗育, 赵文会, 等. 基于近邻传播聚类权重的黑启动方案评估方法[J]. 电力系统自动化, 2020, 44(13): 73-80.
LENG Y J, WU Z Y, ZHAO W H, et al.Assessment method of black-start scheme based on affinity propagation clustering weight[J]. Automation of electric power systems, 2020, 44(13): 73-80.
[13] 朱连江, 马炳先, 赵学泉. 基于轮廓系数的聚类有效性分析[J]. 计算机应用, 2010(增刊2): 139-141, 198.
ZHU L J, MA B X, ZHAO X Q.Clustering validity analysis based on silhouette coefficient[J]. Journal of computer applications, 2010(S2): 139-141, 198.
[14] 王小杨, 罗多, 孙韵琳, 等. 基于ABC-SVM和PSO-RF的光伏微电网发电功率组合预测方法研究[J]. 太阳能学报, 2020, 41(3): 177-183.
WANG X Y, LUO D, SUN Y L, et al.Combined forecasting method of daily photovoltaic power generation in microgrid based on ABC-SVM and PSO-RF models[J]. Acta energiae solaris sinica, 2020, 41(3): 177-183.
[15] 朱念芳, 林善明. 基于邻域KNN算法的风电功率短期预测模型[J]. 电测与仪表, 2017, 54(16): 20-24.
ZHU N F, LIN S M.Short-term wind power prediction model based on KNN algorithm considering neighbors density[J]. Electrical measurement & instrumentation, 2017, 54(16): 20-24.
[16] 陈中, 宗鹏鹏. 基于样本扩张灰色关联分析的光伏出力预测[J]. 太阳能学报, 2017, 38(11): 2909-2915.
CHEN Z, ZONG P P.Photovoltaic output prediction based on gray relational analysis of sample expansion[J]. Acta energiae solaris sinica, 2017, 38(11): 2909-2915.
[17] 许可, 王珏, 姚铁锤, 等. 基于分时LSTM的光伏发电功率预测[J]. 数据与计算发展前沿, 2021, 3(5): 109-117.
XU K, WANG J, YAO T C, et al.Photovoltaic power forecast based on time-division LSTM[J]. Frontiers of data & computing, 2021, 3(5): 109-117.
PDF(1973 KB)

Accesses

Citation

Detail

Sections
Recommended

/