DEVELOPMENT TREND AND APPLICATION PROSPECT OF GREEN HYDROGEN PRODUCTION TECHNOLOGIES UNDER CARBON NEUTRALITY VISION

Li Liangrong, Peng Jian, Fu Bing, Huang Yulin, Jiang Hui, Qi Haixia

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (6) : 508-520.

PDF(1497 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1497 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (6) : 508-520. DOI: 10.19912/j.0254-0096.tynxb.2022-0183

DEVELOPMENT TREND AND APPLICATION PROSPECT OF GREEN HYDROGEN PRODUCTION TECHNOLOGIES UNDER CARBON NEUTRALITY VISION

  • Li Liangrong1, Peng Jian1, Fu Bing1, Huang Yulin1, Jiang Hui1, Qi Haixia2
Author information +
History +

Abstract

Focusing on the current mainstream key technologies of green hydrogen production, this paper reviews the latest research progress of green hydrogen technologies at home and abroad, and focuses on the hydrogen production principles, technical difficulties and improvement methods of electrolytic water hydrogen production technology (alkaline electrolytic water method, proton exchange membrane electrolysis water method, solid oxide electrolysis water method), solar decomposition water hydrogen production technology (photocatalytic method, photo-thermal decomposition method, photoelectric chemical method) and biomass hydrogen production technology (thermochemical conversion method, microbial method). In addition, the characteristics of various‘green hydrogen’technologies are discussed and compared. Finally, the application prospects and development directions of green hydrogen production technologies in the future are analyzed.

Key words

carbon neutrality / solar decomposition water hydrogen production / electrolytic water hydrogen production / hydrogen production from biomass / green hydrogen

Cite this article

Download Citations
Li Liangrong, Peng Jian, Fu Bing, Huang Yulin, Jiang Hui, Qi Haixia. DEVELOPMENT TREND AND APPLICATION PROSPECT OF GREEN HYDROGEN PRODUCTION TECHNOLOGIES UNDER CARBON NEUTRALITY VISION[J]. Acta Energiae Solaris Sinica. 2022, 43(6): 508-520 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0183

References

[1] 李建林, 梁忠豪, 李光辉, 等. 太阳能制氢关键技术研究[J]. 太阳能学报, 2022, 43(3): 2-11.
LI J L, LIANG Z H, LI G H, et al.Analysis of key technologies for solar hydrogen production[J]. Acta energiae solaris sinica, 2022, 43(3): 2-11.
[2] 张晨佳, 蔡军, 张玉魁, 等. 基于热力学平衡的高温固体氧化物电解水制氢模拟[J]. 太阳能学报, 2021, 42(9): 210-217.
ZHANG C J, CAI J, ZHANG Y K, et al.Simulation of high temperature solid oxide water electrolysis for hydrogen production based on thermodynamic equilibrium[J]. Acta energiae solaris sinica, 2021, 42(9): 210-217.
[3] ZHANG B, ZHANG S X, YAO R, et al.Progress and prospects of hydrogen production: opportunities and challenges[J]. Journal of electronic science and technology, 2021, 19(2): 100080.
[4] WANG M J, WANG G Z, SUN Z X, et al.Review of renewable energy-based hydrogen production processes for sustainable energy innovation[J]. Global energy interconnection, 2019, 2(5): 436-443.
[5] SUN H.Hydrogen energy is arousing great attention all over the world[J]. International journal of hydrogen energy, 2021, 46(3): 2845-2846.
[6] 李亮荣, 付兵, 刘艳, 等. 生物质衍生物重整制氢研究进展[J]. 无机盐工业, 2021, 53(9): 12-17.
LI L R, FU B, LIU Y, et al.Research progress of hydrogen production by reforming biomass-derived compounds[J]. Inorganic chemicals industry, 2021, 53(9): 12-17.
[7] 李亮荣, 孙戊辰, 陈祖杰, 等. 载体改性对Ni/La2O2CO3催化乙醇水蒸气重整制氢的影响[J]. 稀有金属与硬质合金, 2021, 49(4): 50-54.
LI L R, SUN W C, CHEN Z J, et al.Effect of carrier modification on reforming to produce hydrogen of ethanol steam catalyzed by Ni/La2O2CO3[J]. Rare metals and cemented carbides, 2021, 49(4): 50-54.
[8] CAI T, SUN H B, QIAO J, et al.Cell-free chemoenzymatic starch synthesis from carbon dioxide[J]. Science, 2021, 373(6562): 1523-1527.
[9] HOWARTH R W, JACOBSON M Z.How green is blue hydrogen[J]. Energy science and engineering, 2021, 9(10): 1676-1687.
[10] 苗安康, 袁越, 吴涵, 等. "双碳"目标下绿色氢能技术发展现状与趋势研究[J]. 分布式能源, 2021, 6(4): 15-24.
MIAO A K, YUAN Y, WU H, et al.Research on development status and trend of green hydrogen energy technologies under targets of carbon peak and carbon neutrality[J]. Distributed energy, 2021, 6(4): 15-24.
[11] 李建林, 梁忠豪, 梁丹曦, 等. “双碳”目标下绿氢制备及应用技术发展现状综述[J]. 分布式能源, 2021, 6(4): 25-33.
LI J L, LIANG Z H, LIANG D X, et al.Overview of development status of green hydrogen production and application technology under targets of carbon peak and carbon neutrality[J]. Distributed energy, 2021, 6(4): 25-33.
[12] LIU L, JIANG P, QIAN H L, et al.CO2-negative biomass conversion: an economic route with co-production of green hydrogen and highly porous carbon[J]. Applied energy, 2022, 311: 118685.
[13] BING R G, STRAUB C T, SULIS D B, et al.Plant biomass fermentation by the extreme thermophile Caldicellulosiruptor bescii for co-production of green hydrogen and acetone: technoeconomic analysis[J]. Bioresource technology, 2022, 348: 126780.
[14] ANWAR S, KHAN F, ZHANG Y H, et al.Recent development in electrocatalysts for hydrogen production through water electrolysis[J]. International journal of hydrogen energy, 2021, 46(63): 32284-32317.
[15] 王彦哲, 周胜, 周湘文, 等. 中国不同制氢方式的成本分析[J]. 中国能源, 2021, 43(5): 29-37.
WANG Y Z, ZHOU S, ZHOU X W, et al.Cost analysis of different hydrogen production methods in China[J]. Energy of China, 2021, 43(5): 29-37.
[16] OYINBO S T, JEN T.Hydrogen evolution reaction in an alkaline environment through nanoscale Ni, Pt, NiO, Fe/Ni and Pt/Ni surfaces: reactive molecular dynamics simulation[J]. Materials chemistry and physics, 2021, 271: 124886.
[17] KIM S, HAN K H, YUK J, et al.Highly selective porous separator with thin skin layer for alkaline water electrolysis[J]. Journal of power sources, 2022, 524: 231059.
[18] BAO X B, WANG J, LIAN X, et al.Ni/nitrogen-doped graphene nanotubes acted as a valuable tailor for remarkably enhanced hydrogen evolution performance of platinum-based catalysts[J]. Journal of materials chemistry A, 2017, 5(31): 16249-16254.
[19] ZHENG B C, MA L, LI B, et al.pH universal Ru @N-doped carbon catalyst for efficient and fast hydrogen evolution[J]. Catalysis science & technology, 2020, 10(13): 4405-4411.
[20] LI G K, JANG H, LIU S G, et al.The synergistic effect of Hf-O-Ru bonds and oxygen vacancies in Ru/HfO2 for enhanced hydrogen evolution[J]. Nature communications, 2022, 13: 1270.
[21] 张开悦, 刘伟华, 陈晖, 等. 碱性电解水析氢电极的研究进展[J]. 化工进展, 2015, 34(10): 3680-3687, 3778.
ZHANG K Y, LIU W H, CHEN H, et al.Research progress in hydrogen electrode materials for alkaline water electrolysis[J]. Chemical industry and engineering progress, 2015, 34(10): 3680-3687, 3778.
[22] OSHCHEPKOV A G, BONNEFONT A, PARMON V N, et al.On the effect of temperature and surface oxidation on the kinetics of hydrogen electrode reactions on nickel in alkaline media[J]. Electrochimica acta, 2018, 269: 111-118.
[23] KUMAR M, SHETTI N P.Magnetron sputter deposited NiCu alloy catalysts for production of hydrogen through electrolysis n alkaline water[J]. Materials science for energy technologies, 2018, 1(2): 160-165.
[24] VIDALES A G, CHOI K, OMANOVIC S.Nickel-cobalt-oxide cathodes for hydrogen production by water electrolysis in acidic and alkaline media[J]. International journal of hydrogen energy, 2018, 43(29): 12917-12928.
[25] FENG Z B, ZHANG H, GAO B, et al.Ni-Zn nanosheet anchored on rGO as bifunctional electrocatalyst for efficient alkaline water-to-hydrogen conversion via hydrazine electrolysis[J]. International journal of hydrogen energy, 2020, 45(38): 19335-19343.
[26] SHETTY S, SADIQ M J, BHAT D, et al.Electrodeposition and characterization of Ni-Mo alloy as an electrocatalyst for alkaline water electrolysis[J]. Journal of electroanalytical chemistry, 2017, 796: 57-65.
[27] KUMAR S S, RAMAKRISHNA S, KRISHNA S V, et al.Synthesis of Titanium (IV) oxide composite membrane for hydrogen production through alkaline water electrolysis[J]. South African journal of chemical engineering, 2017, 25: 54-61.
[28] AILI D, KRAGLUND M R, TAVACOLI J, et al.Polysulfone-polyvinylpyrrolidone blend membranes as electrolytes in alkaline water electrolysis[J]. Journal of membrane science, 2020, 598: 117674.
[29] LYU B, YIN H, SHAO Z G, et al.Novel polybenzimidazole/graphitic carbon nitride nanosheets composite membrane for the application of acid-alkaline amphoteric water electrolysis[J]. Journal of energy chemistry, 2021, 64: 607-614.
[30] LAMY C, COUTANCEAU C, BARANTON S.Principle of hydrogen production by electrocatalytic oxidation of organic compounds in a proton exchange membrane electrolysis cell[M]. Amsterdam: Elsevier, 2020: 7-20.
[31] MILLET P, NGAMENI R, GRIGORIEV S A, et al.PEM water electrolyzers: from electrocatalysis to stack development[J]. International journal of hydrogen energy, 2010, 35(10): 5043-5052.
[32] 何泽兴, 史成香, 陈志超, 等. 质子交换膜电解水制氢技术的发展现状及展望[J]. 化工进展, 2021, 40(9): 4762-4773.
HE Z X, SHI C X, CHEN Z C, et al.Development status and prospects of proton exchange membrane water electrolysis[J]. Chemical industry and engineering progress, 2021, 40(9): 4762-4773.
[33] LOH A, LI X H, TAIWO O, et al.Development of Ni-Fe based ternary metal hydroxides as highly efficient oxygen evolution catalysts in AEM water electrolysis for hydrogen production[J]. International journal of hydrogen energy, 2020, 45(46): 24232-24247.
[34] YAN K L, QIN J F, LIN J H, et al.Probing the active sites of Co3O4 for the acidic oxygen evolution reaction by modulating the Co2+/Co3+ ratio[J]. Journal of materials chemistry A, 2018, 6(14): 5678-5689.
[35] CHATTERJEE S, INTIKHAB S, PROFITT L, et al.Nanoporous multimetallic Ir alloys as efficient and stable electrocatalysts for acidic oxygen evolution reactions[J]. Journal of catalysis, 2021, 393: 303-312.
[36] BÖHM D, BEETZ M, GEBAUER C, et al. Highly conductive titania supported iridium oxide nanoparticles with low overall iridium density as OER catalyst for large-scale PEM electrolysis[J]. Applied materialstoday, 2021, 24: 101134.
[37] NI M, LEUNG M K H, LEUNG D Y C. Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC)[J]. International journal of hydrogen energy, 2008, 33(9): 2337-2354.
[38] YU J, MEN H J, QU Y M, et al.Performance of Ni-Fe bimetal based cathode for intermediate temperature solid oxide electrolysis cell[J]. Solid state ionics, 2020, 346: 115203.
[39] KIM J, JUN A, GWON O, et al.Hybrid-solid oxide electrolysis cell: a new strategy for efficient hydrogen production[J]. Nano energy, 2018, 44: 121-126.
[40] LIU G Y, SHENG Y, AGER K W, et al.Research advances towards large-scale solar hydrogen production from water[J]. EnergyChem, 2019, 1(2): 100014.
[41] MA Z W, DAVENPORT P, SAUR G.System and technoeconomic analysis of solar thermochemical hydrogen production[J]. Renewable energy, 2022, 190: 294-308.
[42] YANG L, LI X Y, ZHANG G Z, et al.Combining photocatalytic hydrogen generation and capsule storage in graphene based sandwich structures[J]. Nature communications, 2017, 8: 16049.
[43] MAEDA K.Photocatalytic water splitting using semiconductor particles: history and recent developments[J]. Journal of photochemistry and photobiology C: Photochemistry reviews, 2011, 12: 237-268.
[44] FUJISHIMA A, HONDA K.Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238: 37-38.
[45] CHAKRABORTY M, ROY D, BISWAS A, et al.Structural, optical and photo-electrochemical properties of hydrothermally grown ZnO nanorods arrays covered with α-Fe2O3 nanoparticles[J]. RSC advances, 2016, 6(79): 75063-75072.
[46] MENG A Y, ZHU B C, ZHONG B, et al.Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity[J]. Applied surface science, 2017, 422: 518-527.
[47] SUN W H, ZHU J F, ZHENG Y H.Graphitic carbon nitride heterojunction photocatalysts for solar hydrogen production[J]. International journal of hydrogen energy, 2021, 46(75): 37242-37267.
[48] WANG X C, MAEDA K, THOMAS A, et al.A metal-free polymeric photocatalyst for hydrogen production from water under visiblelight[J]. Nature materials, 2009, 8(1): 76-80.
[49] SONG L M, GUO C P, LI T T, et al.C60/graphene/g-C3N4 composite photocatalyst and mutually-reinforcing synergy to improve hydrogen production in splitting water under visible light radiation[J]. Ceramics international, 2017, 43(10): 7901-7907.
[50] WU H H, YU S Y, WANG Y, et al.A facile one-step strategy to construct 0D/2D SnO2/g-C3N4 heterojunction photocatalyst for high-efficiency hydrogen production performance from water splitting[J]. International journal of hydrogen energy, 2020, 45(55): 30142-30152.
[51] LI B Y, ZHANG B N, ZHANG Y N, et al.Porous g-C3N4/TiO2 S-scheme heterojunction photocatalyst for visible-light driven H2-production and simultaneous wastewater purification[J]. International journal of hydrogen energy, 2021, 46(64): 32413-32424.
[52] FORD N C, KANE J W.Solar power[J]. Bulletin of the atomic scientists, 1971, 27(8): 27-31.
[53] CUMPSTON J, HERDING R, LECHTENBERG F, et al.Design of 24/7 continuous hydrogen production system employing the solar-powered thermochemical S-I cycle[J]. International journal of hydrogen energy, 2020, 45(46): 24383-24396.
[54] SAFARI F, DINCER I.A review and comparative evaluation of thermochemical water splitting cycles for hydrogen production[J]. Energy conversion and management, 2020, 205: 112182.
[55] ISHAQ H, DINCER I.A comparative evaluation of three Cu-Cl cycles for hydrogen production[J]. International journal of hydrogen energy, 2019, 44(16): 7958-7968.
[56] OUAGUED M, KHELLAF A, LOUKARFI L.Performance analyses of Cu-Cl hydrogen production integrated solar parabolic trough collector system under Algerian climate[J]. International journal of hydrogen energy, 2017, 43(6): 3451-3465.
[57] CHEN S, LIU T X, ZHENG Z H, et al.Recent progress and perspectives on Sb2Se3-based photocathodes for solar hydrogen production via photoelectrochemical water splitting[J]. Journal of energy chemistry, 2022, 67: 508-523.
[58] MANZELI S, OVCHINNIKOV D, PASQUIER D, et al.2D transition metal dichalcogenides[J]. Nature reviews materials, 2017, 2(8): 17033.
[59] LAMOUCHI A, ASSAKER I B, CHTOUROU R.Enhanced photoelectrochemical activity of MoS2-decorated ZnO nanowires electrodeposited onto stainless steel mesh for hydrogen production[J]. Applied surface science, 2019, 478: 937-945.
[60] HU J Y, LI Y H, ZHANG S S, et al.MoS2 supported on hydrogenated TiO2 heterostructure film as photocathode for photoelectrochemical hydrogen production[J]. International journal of hydrogen energy, 2019, 44(59): 31008-31019.
[61] ROSMAN N N, ROZAN M Y, ARIFIN K, et al.Graphene films on MoS2/SiO2/Si substrate for current density performance[J/OL]. Materials today: Proceedings: 1-5[2022-04-08]. https://doi.org/10.1016/j.matpr.2021.10.122 .
[62] SUN B L, FEI S, JIANG X, et al.One-pot synthesis of MoS2/In2S3 ultrathin nanoflakes with meshshaped structure on indium tin oxide as photocathode for enhanced photo-and electrochemical hydrogen evolution reaction[J]. Applied surface science, 2018, 435: 822-831.
[63] PANDEY B, PRAJAPATI Y K, SHETH P N.Recent progress in thermochemical techniques to produce hydrogen gas from biomass: a state of the art review[J]. International journal of hydrogen energy, 2019, 44(47): 25384-25415.
[64] ZHANG H S, WANG Y, FENG X C, et al.Renewable biohydrogen production from straw biomass-Recent advances in pretreatment/hydrolysis technologies and future development[J/OL]. International journal of hydrogen energy: 1-15[2022-04-08]. https://doi.org/10.1016/j.ijhydene.2021.10.020.
[65] PAL D B, SINGH A, BHATNAGAR A.A review on biomass based hydrogen production technologies[J]. International journal of hydrogen energy, 2021, 47(3): 1461-1480.
[66] SORIA M A, BARROS D, MADEIRA L M.Hydrogen production through steam reforming of bio-oils derived from biomass pyrolysis: thermodynamic analysis including in situ CO2 and/or H2 separation[J]. Fuel, 2019, 244: 184-195.
[67] SAMIMI F, MARZOUGHI T, RAHIMPOUR M R.Energy and exergy analysis and optimization of biomass gasification process for hydrogen production (based on air, steam and air/steam gasifying agents)[J]. International journal of hydrogen energy, 2020, 45(58): 33185-33197.
[68] SHAHABUDDIN M, KRISHNA B B, BHASKAR T, et al.Advances in the thermo-chemical production of hydrogen from biomass and residual wastes: summary of recent techno-economic analyses[J]. Bioresource technology, 2019, 299: 122557.
[69] KUMAR M, OYEDUN A O, KUMAR A.A comparative analysis of hydrogen production from the thermochemical conversion of algal biomass[J]. International journal of hydrogen energy, 2019, 44(21): 10384-10397.
[70] HOANG A T, ONG H C, FATTAH I M R, et al. Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability[J]. Fuel processing technology, 2021, 223:106997.
[71] DONG L S, WU C F, LING H J, et al.Promoting hydrogen production and minimizing catalyst deactivation from the pyrolysis-catalytic steam reforming of biomass on nanosized NiZnAlOx catalysts[J]. Fuel, 2017, 188: 610-620.
[72] BLANQUET E, WILLIAMS P T.Biomass pyrolysis coupled with non-thermal plasma/catalysis for hydrogen production: influence of biomass components and catalyst properties[J]. Journal of analytical and applied pyrolysis, 2021, 159: 105325.
[73] ASHOK J, DEWANGAN N, DAS S, et al.Recent progress in the development of catalysts for steam reforming of biomass tar model reaction[J]. Fuel processing technology, 2020, 199: 106252.
[74] CAO L C, YU I, XIONG X N, et al.Biorenewable hydrogen production through biomass gasification: a review and future prospects[J]. Environmental research, 2020, 186: 109547.
[75] YONG Y S, RASID R A.Process simulation of hydrogen production through biomass gasification: Introduction of torrefaction pre-treatment[J]. International journal of hydrogen energy: 1-11[2022-04-08]. https://doi.org/10.1016/j.ijhydene.2021.07.010.
[76] ALNOUSS A, MCKAY G, ANSARI T.A comparison of steam and oxygen fed biomass gasification through a techno-economic-environmental study[J]. Energy conversion and management, 2020, 208: 112612.
[77] KRUSE A.Supercritical water gasification[J]. Biofuels, bioproducts and biorefining, 2008, 2(5): 415-437.
[78] PAL B D, SINGH A, BHATNAGAR A.A review on biomass based hydrogen production technologies[J]. International journal of hydrogen energy, 2022, 47(3): 1461-1480.
[79] KOKU H, EROGLU I, GUENDUEZ U, et al.Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides[J]. International journal of hydrogen energy, 2002, 27(11-12): 1315-1329.
[80] MISHRA P, KRISHNAN S, RANA S, et al.Outlook of fermentative hydrogen production techniques: an overview of dark, photo and integrated dark-photo fermentative approach to biomass[J]. Energy strategy reviews, 2019, 24: 27-37.
[81] TONDRO H, MUSIVAN S, ZILOUEI H, et al.Biological production of hydrogen and acetone-butanol-ethanol from sugarcane bagasse and rice straw using co-culture of Enterobacter aerogenes and Clostridium acetobutylicum[J]. Biomass and bioenergy, 2020, 142: 105818.
[82] SERKAN E, SARP M.Hydrogen gas production from waste paper by dark fermentation: effects of initial substrate and biomass concentrations[J]. International journal of hydrogen energy, 2017, 42(4): 2562-2568.
[83] CAO X Y, ZHAO L, DONG W F, et al.Revealing the mechanisms of alkali-based magnetic nanosheets enhanced hydrogen production from dark fermentation: comparison between mesophilic and thermophilic conditions[J]. Bioresource technology, 2022, 343: 126141.
[84] GADHE A, SONAWANE S S, VARMA M N.Influence of nickel and hematite nanoparticle powder on the production of biohydrogen from complex distillery wastewater in batch fermentation[J]. International journal of hydrogen energy, 2015, 40(34): 10734-10743.
[85] RAMBABU K, BHARATH G, THANIGAIVELAN A, et al.Augmented biohydrogen production from rice mill wastewater through nano-metal oxides assisted dark fermentation[J]. Bioresource technology, 2021, 319:124243.
[86] ZHANG Y T, WEI W, NI B J.Revealing the mechanism of zinc oxide nanoparticles facilitating hydrogen production in alkaline anaerobic fermentation of waste activated sludge[J]. Journal of cleaner production, 2021, 328: 129580.
[87] SU H B, CHENG J, ZHOU J H, et al.Combination of dark-and photo-fermentation to enhance hydrogen production and energy conversion efficiency[J]. International journal of hydrogen energy, 2009, 34(21): 8846-8853.
PDF(1497 KB)

Accesses

Citation

Detail

Sections
Recommended

/