DESIGN AND TEST OF MAGNETOELECTRIC GENERATOR OF WAVE ENERGY CONVERTOR

Zhang Yuxiang, Chen Renwen, Wang Liping, Zhou Hongbiao, Shen Qian

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (6) : 24-29.

PDF(1894 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1894 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (6) : 24-29. DOI: 10.19912/j.0254-0096.tynxb.2022-0196

DESIGN AND TEST OF MAGNETOELECTRIC GENERATOR OF WAVE ENERGY CONVERTOR

  • Zhang Yuxiang1, Chen Renwen2, Wang Liping2, Zhou Hongbiao1, Shen Qian1
Author information +
History +

Abstract

An magnetoelectric generator combining Halbach permanent magnet array with a coreless structure is proposed for the multi-buoy Wave Energy Convertor (WEC), enabling direct conversion of wave energy into electrical energy. An improved equivalent magnetic circuit model is proposed for this magnetoelectric generator, and the structure of the magnetoelectric generator is optimized according to the maximum damping factor. The calculation results of the improved equivalent magnetic circuit model are compared with the results obtained through simulation software to verify the validity of the improved equivalent magnetic circuit model. After optimizing the structure of the electromagnetic transducer under laboratory conditions, a prototype of the magnetoelectric transducer was built and an experimental test rig was set up to test the performance of the prototype. The test results show that the voltage of the prototype is approximately 75% of the theoretical value. The peak voltages of the two windings at different positions of the prototype are 32.33 V and 27.98 V respectively at an amplitude of 20 mm and a frequency of 6 Hz, and an RMS value of 15.00 V and 16.50 V respectively. Its energy harvesting power is 49.72 W.

Key words

wave power / direct energy conversion / magnetoelectric generators / Halbach array / coreless

Cite this article

Download Citations
Zhang Yuxiang, Chen Renwen, Wang Liping, Zhou Hongbiao, Shen Qian. DESIGN AND TEST OF MAGNETOELECTRIC GENERATOR OF WAVE ENERGY CONVERTOR[J]. Acta Energiae Solaris Sinica. 2023, 44(6): 24-29 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0196

References

[1] QIU S Q, LIU K, WANG D J, et al.A comprehensive review of ocean wave energy research and development in China[J]. Renewable and sustainable energy reviews, 2019, 113: 109271.
[2] MAHMOODI K, GHASSEMI H, RAZMINIA A.Temporal and spatial characteristics of wave energy in the Persian Gulf based on the ERA5 reanalysis dataset[J]. Energy, 2019, 187: 115991.
[3] JANZEN R, DAVIS M, KUMAR A.Greenhouse gas emission abatement potential and associated costs of integrating renewable and low carbon energy technologies into the Canadian oil sands[J]. Journal of cleaner production, 2020, 272: 122820.
[4] PEREZ-COLLAZO C, PEMBERTON R, GREAVES D, et al.Monopile-mounted wave energy converter for a hybrid wind-wave system[J]. Energy conversion and management, 2019, 199: 111971.
[5] ZANOUS S P, SHAFAGHAT R, ALAMIAN R, et al.Feasibility study of wave energy harvesting along the southern coast and islands of Iran[J]. Renewable energy, 2019, 135: 502-514.
[6] OLIVEIRA-PINTO S, ROSA-SANTOS P, TAVEIRA-PINTO F.Electricity supply to offshore oil and gas platforms from renewable ocean wave energy: overview and case study analysis[J]. Energy conversion and management, 2019, 186: 556-569.
[7] XU S, WANG S, SOARES C G.Review of mooring design for floating wave energy converters[J]. Renewable and sustainable energy reviews, 2019, 111: 595-621.
[8] PANG Y K, CHEN S E, CHU Y H, et al.Matryoshka-inspired hierarchically structured triboelectric nanogenerators for wave energy harvesting[J]. Nano energy, 2019, 66: 104131.
[9] CALHEIROS-CABRAL T, CLEMENTE D, ROSA-SANTOS P, et al.Evaluation of the annual electricity production of a hybrid breakwater-integrated wave energy converter[J]. Energy, 2020, 213: 118845.
[10] ERSELCAN İ Ö, KÜKNER A. A parametric optimization study towards the preliminary design of point absorber type wave energy converters suitable for the Turkish coasts of the Black Sea[J]. Ocean engineering, 2020, 218: 108275.
[11] 赵青, 唐友刚, 曲志森, 等. 非坐底式浮力摆波浪能装置运动的特性试验[J]. 哈尔滨工程大学学报, 2018, 39(2): 254-260.
ZHAO Q, TANG Y G, QU Z S, et al.Experimental study of motion behaviors for non-bottom-hinged flap wave-energy converter[J]. Journal of Harbin Engineering University, 2018, 39(2): 254-260.
[12] 顾煜炯, 谢典. 一种振荡浮子式波浪能发电装置的实验研究[J]. 太阳能学报, 2017, 38(2): 551-557.
GU Y J, XIE D.Experimental research of oscillation float type wave energy power generation device[J]. Acta energiae solaris sinica, 2017, 38(2): 551-557.
[13] 王项南, 俞彦辉, 夏海南. 波浪能发电装置功率特性现场测试分析方法研究[J]. 仪器仪表学报, 2019, 40(1): 70-76.
WANG X N, YU Y H, XIA H N.Research on power characteristic field test analysis method of wave energy generation device[J]. Chinese journal of scientific instrument, 2019, 40(1): 70-76.
[14] ZHANG Y X, CHEN R W, LIU C, et al.Structural optimisation based on a snake-like wave energy convertor with magnetoelectric transducer[J]. IET renewable power generation, 2020, 14(14): 2703-2711.
[15] ZHENG S M, ZHANG Y H, ZHANG Y L, et al.Numerical study on the dynamics of a two-raft wave energy conversion device[J]. Journal of fluids and structures, 2015, 58: 271-290.
[16] 郑思明. 筏式波浪能海水淡化装置的水动力性能研究[D]. 北京: 清华大学, 2016.
ZHENG S M.Study on hydrodynamic characteristics of the raft-type wave powered desalination device[D]. Beijing: Tsinghua University, 2016.
[17] ZHANG Y X, CHEN R W, LIU C, et al.Design and performance tests of a snake-like wave energy converter[J]. International journal of applied electromagnetics and mechanics, 2020, 63(2): 327-342.
PDF(1894 KB)

Accesses

Citation

Detail

Sections
Recommended

/