COUPLING DYNAMIC CHARACTERISTICS AND DAMAGE ANALYSIS OF OFFSHORE WIND TURBINES UNDER SEA ICE IMPACT

Liu Yingzhou, Shi Wei, Wang Wenhua, Li Xin, Wang Bin

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (6) : 427-435.

PDF(5267 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(5267 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (6) : 427-435. DOI: 10.19912/j.0254-0096.tynxb.2022-0201

COUPLING DYNAMIC CHARACTERISTICS AND DAMAGE ANALYSIS OF OFFSHORE WIND TURBINES UNDER SEA ICE IMPACT

  • Liu Yingzhou1,2, Shi Wei2,3, Wang Wenhua1,2, Li Xin1,2, Wang Bin4,5
Author information +
History +

Abstract

Based on the NREL-5 MW monopile offshore wind turbine(OWT), considering the pile-soil interaction, a three-dimensional finite element model of the interaction between ice and offshore wind turbine structure is established. Considering the coupling effect of ice and structure interaction, the damage assessment and dynamic analysis of OWT combined wind and sea ice loads is carried out in ANSYS/LS-DYNA. The area damage ratio is suggested to evaluate the damage of OWTs under dynamic ice loads. Meanwhile, the influence of sea ice thickness on the structural damage and response of OWT is explored. Based on the performed study, it can be seen that the mean value and peak value of dynamic ice force increase, and the dynamic response of offshore wind turbine increases significantly with the increasing of ice thickness. The most significant structural damage is observed at the sea ice impact area, by comparing with the damage of the remaining locations. The area damage rate proposed in this paper can reasonably reflect the damage degree of offshore wind turbines under the action of different ice thicknesses. Ice thicknesses not only affect the area damage rate of single pile foundation, but also affect the linear change rate of damage rate.

Key words

offshore wind turbines / pile foundations / area damage rate / dynamic response / sea ice

Cite this article

Download Citations
Liu Yingzhou, Shi Wei, Wang Wenhua, Li Xin, Wang Bin. COUPLING DYNAMIC CHARACTERISTICS AND DAMAGE ANALYSIS OF OFFSHORE WIND TURBINES UNDER SEA ICE IMPACT[J]. Acta Energiae Solaris Sinica. 2023, 44(6): 427-435 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0201

References

[1] KIM E, AMDAHL J.Discussion of assumptions behind rule-based ice loads due to crushing[J]. Ocean engineering, 2016, 119: 249-261.
[2] 黄焱, 史庆增, 宋安. 冰破坏机理的试验研究[J]. 中国造船, 2003, 44(增刊): 379-386.
HUANG Y,SHI Q Z, SONG A.Experimental study on ice destruction mechanism[J]. Ship building of China, 2003, 44(Z): 379-386.
[3] 张希. 冰激直立结构稳态振动[D]. 大连: 大连理工大学, 2002.
ZHANG X.Steady vibration of ice-induced vertical structure[D]. Dalian:Dalian University of Technology, 2002.
[4] HENDRIKSE H, METRIKINE A.Ice-induced vibrations and ice buckling[J]. Cold regions science and technology, 2016, 131: 129-141.
[5] AKSENOV Y, HIBLER W D.Failure propagation effects in an anisotropic sea ice dynamics model[J]. IUTAM symposium on scaling laws in ice mechanics and ice dynamics, 2001, 94: 363-372.
[6] SOPPER R.The influence of water, snow and granular ice on ice failure processes, ice load magnitude and process pressure[J]. Cold regions science and technology, 2017, 139: 51-64.
[7] HUNKE E C, DUKOWICZ J.An elastic-viscous-plastic model for sea ice dynamics[J]. Journal of geophysical research atmospheres, 1999, 27: 1849-1867.
[8] 屈衍. 基于现场实验的海洋结构随机冰荷载分析[D]. 大连: 大连理工大学, 2006.
QU Y.Random ice load analysis on offshore structures based on field tests[D]. Dalian: Dalian University of Technology, 2006.
[9] 狄少丞, 季顺迎. 海冰与自升式海洋平台相互作用GPU离散元模拟[J]. 力学学报, 2014, 46(4): 561-571.
DI S C, JI S Y.GPU-based discrete element modelling of interaction between sea ice and jack-up platform structure[J]. Chinese journal of theoretical and applied mechanics, 2014, 46(4): 561-571.
[10] SHI W, TAN X, GAO Z.Numerical study of ice-induced loads and responses of a monopile-type offshore wind turbine in parked and operating conditions[J]. Cold regions science and technology, 2016, 123: 121-139.
[11] 黄焱, 马玉贤, 罗金平, 等. 渤海海域单柱三桩式海上风电结构冰激振动分析[J]. 海洋工程, 2016, 34(5): 1-10.
HUANG Y, MA Y X, LUO J P, et al.Analyses on ice induced vibrations of a tripod piled offshore wind turbine structure in Bohai Sea[J]. The ocean engineering, 2016, 34(5): 1-10.
[12] 叶柯华, 李春, 王渊博, 等. 湍流风与浮冰联合作用下近海风力机动力学响应[J]. 热能动力工程, 2019,34(9): 123-131.
YE K H, LI C, WANG Y B, et al.Dynamic response of offshore wind turbine under the combined load of turbulent wind and floating ice[J]. Journal of engineering for thermal energy and power, 2019, 34(9): 123-131.
[13] 叶柯华,李春,杨阳,等. 基于自激冰振的风力机海冰载荷分析[J]. 振动与冲击, 2017, 36(24):177-183.
YE K H, LI C, YANG Y, et al.Sea-ice load analysis of offshore wind turbines based on self-excited ice induced vibration[J]. Journal of vibration and shock, 2017, 36(24): 177-183.
[14] HEINONEN J, RISSANEN S.Coupled-crushing analysis of a sea ice-wind turbine interaction-feasibility study of FAST simulation software[J]. Ships and offshore structures, 2017, 12(8): 1056-1063.
[15] 朱本瑞, 孙超, 黄焱. 冰区海上单桩风力机振动响应与控制[J]. 振动与冲击, 2021, 40(9): 133-141.
ZHU B R, SUN C, HUANG Y.Vibration response and control of offshore monopile wind turbine in ice area[J]. Journal of vibration and shock, 2021, 40(9): 133-141.
[16] 郝二通. 海上风电机组结构抗船撞及抗震性能研究[D]. 大连: 大连理工大学, 2016.
HAO E T.Research on ship collision and seismic performance of offshore wind turbine structure[D]. Dalian:Dalian University of Technology, 2016.
[17] DING H Y, ZHU Q, ZHANG P Y.Dynamic simulation on collision between ship and offshore wind turbine[J]. Journal of Tianjin University, 2014, 20(1):1-6.
[18] LIU Z H, AMDAHL J, LØSET S. Plasticity based material modelling of ice and its application to ship-iceberg impacts[J]. Cold regions science and technology, 2012, 65(3): 326-334.
[19] GAO Y, HU Z Q, RINGSBERG J W.An elastic-plastic ice material model for ship-iceberg collision simulations[J]. Ocean engineering, 2015, 102: 27-39.
[20] GLADMAN B.LS-DYNA® keyword user’s manual, volumeⅡ, material models[R]. 2013.
[21] JONKMAN J, BUTTERFIELD S, MUSIAL W.Definition of a 5 MW reference wind turbine for offshore system development[R]. NREL/TP-500-38060, 2009.
[22] ZENG X M, SHI W, MICHAILIDES C,et al.Numerical and experimental investigation of breaking wave forces on a monopile-type offshore wind turbine[J]. Renewable energy, 2021, 175: 501-519.
[23] LIU C G, HAO E, ZHANG S B.Optimization and application of a crashworthy device for the monopile offshore wind turbine against ship impact[J]. Applied ocean research, 2015, 51: 129-137.
[24] KIM H, TKEDWARD K.Modaling hail ice impacts and predicting impact damage initiation in composite structures[J]. AIAA Journal, 2000, 7: 1278-1288.
[25] KELLY S C, DAVID J B, PAUL D B, et al.A high rate model with failure for ice in LS-DYNA[C]//9th International LS-DYNA Users Conference, Detroit, USA, 2006, 15: 1-16.
[26] JONKMAN B, KILCHER L.Turbsim user’s guide (draft version)[R]. NREL/TP-500-46198, 2012.
[27] IEC 61400-1:2012, Wind turbines (Part1): design requirements[S].
[28] JONKMAN J, MUSIAL W.Offshore code comparison collaboration (OC3) for IEA task 23 offshore wind technology and deployment[R]. NREL/TP-5000-48191, 2010.
[29] JI X, KARR D G, OTERKUS E.A non-simultaneous dynamic ice-structure interaction model[J]. Ocean engineering, 2018, 166: 278-289.
PDF(5267 KB)

Accesses

Citation

Detail

Sections
Recommended

/