A BATTERY SAFETY EVALUATION METHOD FOR REUSE OF RETIRED POWER BATTERY IN ENERGY STORAGE SYSTEM

Yu Lu, Zhang Hui, Tian Peigen, Xiao Xi, Wu Yan, Liu Yulei

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (5) : 446-453.

PDF(1597 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1597 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (5) : 446-453. DOI: 10.19912/j.0254-0096.tynxb.2022-0212

A BATTERY SAFETY EVALUATION METHOD FOR REUSE OF RETIRED POWER BATTERY IN ENERGY STORAGE SYSTEM

  • Yu Lu1, Zhang Hui1,2, Tian Peigen2, Xiao Xi2, Wu Yan3, Liu Yulei4
Author information +
History +

Abstract

The research object is the retired power battery used in the energy storage system. A safety assessment method for cascade utilization of battery combination is proposed. This method uses multi-dimensional data such as battery manufacturers, types, and tests for cascade utilization, and develops comprehensive evaluation and example analysis on the safety performance of cascade secondary batteries by entropy weight-TOPSIS method and analytic hierarchy process. The research results show that, this method can effectively evaluate the safety of the secondary batteries for the energy storage system to be constructed with different manufacturers, batches, and types of retired power batteries, and it is helpful to select the secondary batteries with higher safety to construct the energy storage system. It can further improve the safety of the system and meet the practical needs of large-scale promotion and construction of cascade utilization of energy storage systems.

Key words

retired power batteries / reuse / risk management / energy storage / safety technology / TOPSIS

Cite this article

Download Citations
Yu Lu, Zhang Hui, Tian Peigen, Xiao Xi, Wu Yan, Liu Yulei. A BATTERY SAFETY EVALUATION METHOD FOR REUSE OF RETIRED POWER BATTERY IN ENERGY STORAGE SYSTEM[J]. Acta Energiae Solaris Sinica. 2022, 43(5): 446-453 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0212

References

[1] 李建林, 李雅欣, 吕超, 等. 退役动力电池梯次利用关键技术及现状分析[J]. 电力系统自动化, 2020, 44(13): 172-183.LI J L, LI Y X, LYU C, et al. Analysis on key technologies and current situation of echelon utilization of retired power batteries[J]. Power system automation, 2020, 44(13): 172-183.
[2] CHEN Y F, EVANS J W.Heat transfer phenomena in lithium/polymer-electrolyte batteries for electric vehicle application[J]. Journal of the Electrochemical Society, 1993, 140(7): 1833-1837.
[3] 张世翔, 吕帅康. 面向园区微电网的综合能源系统评价方法[J].电网技术, 2018, 42(8): 2431-2438.ZHANG S X, LYU S K. Comprehensive energy system evaluation method for park microgrid[J]. Power grid technology, 2018, 42(8): 2431-2438.
[4] 李国煜. 梯次利用电池应用场景适用性分析[D]. 北京: 北京交通大学, 2020.LI G Y. Applicability analysis of echelon battery application scenario[D]. Beijing: Beijing Jiaotong University, 2020
[5] 李建林, 李雅欣, 吕超, 等. 碳中和目标下退役电池筛选聚类关键技术研究[J]. 电网技术, 2022(2): 429-441.LI J L, LI Y X, LYU C, et al. Research on Key technologies of retired battery screening and clustering under carbon neutralization target[J]. Power grid technology, 2022(2): 429-441.
[6] 李建林, 李雅欣, 吕超, 等. 碳中和目标下退役电池筛选聚类关键技术研究[J/OL]. 电网技术:1-14[2021-10-05].LI J L, LI Y X, LYU C, et al. Research on Key Technologies of retired battery screening and clustering under carbon neutralization target[J/OL]. Power grid technology: 1-14 [2021-10-05].
[7] VIDAL C, GROSS O, GU R, et al.EV li-ion battery low-temperature effects—Review[J]. IEEE transactions on vehicular technology, 2019, 68(5): 4560-4572.
[8] 彭琦, 刘群兴, 叶耀良. 锂离子电池安全技术综述[J]. 电子产品可靠性与环境试验, 2012(2): 48-51.PENG Q, LIU Q X , YE Y L. Review on safety technology of lithium ion battery[J]. Reliability and environmental test of electronic products, 2012(2): 48-51
[9] 赵伟, 闵婕, 李章溢, 等. 基于一致性模型的梯次利用锂离子电池组能量利用率估计方法[J]. 电工技术学报, 2021, 36(10): 2190-2198.ZHAO W, MIN J, LI Z Y , et al. Energy utilization estimation method of echelon utilization lithium ion battery pack based on consistency model[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2190-2198.
[10] 冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016.FENG X N. Thermal runaway induction and expansion mechanism, modeling and prevention and control of vehicle lithium ion power battery[D]. Beijing: Tsinghua University, 2016.
[11] 张利中, 穆苗苗, 赵书奇, 等. 再利用退役锂动力电池的性能评估[J]. 电源技术, 2018, 42(7): 964-967.ZHANG L Z, MU M M, ZHAO S Q, et al. Performance evaluation of reusing retired lithium power batteries[J]. Power technology, 2018, 42(7): 964-967.
[12] 杨金亮, 刘兴波, 刘国庆. 动力电池PACK一致性探讨[J]. 重型汽车, 2016(6): 19-20.YANG J L, LIU X B, LIU G Q. Discussion on pack consistency of power battery[J]. Heavy truck, 2016(6): 19-20.
[13] 胡家佳, 许涛, 方雷. 锂离子电池自放电影响因素及测量方法研究[J]. 电源技术, 2017, 41(3): 495-497.HU J J, XU T, FANG L. Study on self discharge film response factors and measurement methods of lithium ion battery [J]. Power technology, 2017, 41(3): 495-497.
[14] 张帅. 水闸工程安全性综合评价[J]. 水利科学与寒区工程, 2020, 3(5): 87-90.ZHANG S. Comprehensive safety evaluation of sluice project[J]. Water conservancy science and cold region engineering, 2020, 3(5): 87-90.
[15] 张家美, 黎灿兵, 彭敏放, 等. 基于综合功率介数的主动配电网脆弱性分析[J]. 电力系统保护与控制, 2018, 46(18): 41-48.ZHANG J M, LI C B, PENG M F, et al. Vulnerability analysis of active distribution network based on comprehensive power medium[J]. Power system protection and control, 2018, 46(18): 41-48.
[16] 毕娟, 李希建. 组合赋权的TOPSIS在冲击地压危险性评价中的应用[J]. 矿业安全与环保, 2020, 47(2): 114-119.BI J, LI X J. Application of combined weighted TOPSIS in rockburst risk assessment[J]. Mining safety and environmental protection, 2020, 47(2): 114-119.
[17] 何永贵, 刘江. 基于组合赋权-云模型的电力物联网安全风险评估[J]. 电网技术, 2020, 44(11): 4302-4309.HE Y G, LIU J. Security risk assessment of power Internet of things based on combined weighting cloud model[J]. Power grid technology, 2020, 44(11): 4302-4309.
[18] 邱伟强, 王茂春, 林振智, 等. “双碳”目标下面向新能源消纳场景的共享储能综合评价[J]. 电力自动化设备, 2021, 41(10): 244-255.QIU W Q, WANG M C, LIN Z Z, et al. Comprehensive evaluation of shared energy storage for new energy consumption scenario under the“double carbon”goal[J]. Power automation equipment, 2021, 41(10): 244-255.
PDF(1597 KB)

Accesses

Citation

Detail

Sections
Recommended

/