NUMERICAL SIMULATION STUDY OF LOW TEMPERATURE COLD START OF PEMFC UNDER DIFFERENT OPERATING AND ENVIRONMENTAL CONDITIONS

Zhao Jie, Li Wenhao, Du Changqing, Lu Chihua

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (6) : 460-466.

PDF(1763 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1763 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (6) : 460-466. DOI: 10.19912/j.0254-0096.tynxb.2022-0321

NUMERICAL SIMULATION STUDY OF LOW TEMPERATURE COLD START OF PEMFC UNDER DIFFERENT OPERATING AND ENVIRONMENTAL CONDITIONS

  • Zhao Jie1,2, Li Wenhao1,2, Du Changqing1,2, Lu Chihua1,2
Author information +
History +

Abstract

A low temperatrue 1-D transient multiphysics coupled cold start model of proton exchange membrane fuel cell based on COMSOL is established to investigate the effects of different operating and environment conditions including constant-voltage mode、constant-current mode、initial membrane water content and ambient temperarure on the performance of cold startup from subzero temperatures,considering the freezing process of water vapor and membrane water below 0 ℃. It is found that fuel cell can generate more heat under low voltage compared with high voltage and the temperature rises faster. However the rate of icing increases sharply resulting in faster performance degradation. Fuel cell can reach a higher temperature under constant-current mode compared with constant-voltage mode but requires better mass transfer capacity of reactant gas. If the purging is insufficient before the low temperature cold start, the water content of the membrane is high and the water storage capacity of the membrane decreases which will cause the output performance to degrade faster which is not conducive to the success of cold start. The difference of ambient temperature during startup will directly affect the success of cold startup and there is a limit value for the initial ambient temperature that only relies on passive heating for successful startup.

Key words

fuel cell / proton exchange membrane / numerical simulation / 1D transient model / low temperature cold start

Cite this article

Download Citations
Zhao Jie, Li Wenhao, Du Changqing, Lu Chihua. NUMERICAL SIMULATION STUDY OF LOW TEMPERATURE COLD START OF PEMFC UNDER DIFFERENT OPERATING AND ENVIRONMENTAL CONDITIONS[J]. Acta Energiae Solaris Sinica. 2022, 43(6): 460-466 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0321

References

[1] LUO Y Q, JIAO K.Cold start of proton exchange membrane fuel cell[J]. Progress in energy and combustion science, 2018, 64: 29-61.
[2] 孙术发, 任春龙, 杨洁, 等. 二次吹扫条件下PEMFC电堆冷启动特性实验研究[J]. 太阳能学报, 2021, 42(5):54-59.
SUN S F, REN C L, YANG J, et al.Experimental study on cold boot characteristics of pemfc stack under twice-purge condition[J]. Acta energiae solaris sinica, 2021, 42(5): 54-59.
[3] JIAO K, LI X G.Effects of various operating and initial conditions on cold start performance of polymer electrolyte membrane fuel cells[J]. International journal of hydrogen energy, 2009, 34(19): 8171-8184.
[4] YANG X G, TABUCHI Y, KAGAMI F, et al.Durability of membrane electrode assemblies under polymer electrolyte fuel cell cold start cycling[J]. Journal of the ElectroChemical Society, 2008, 155(7): B752-B761.
[5] ZHAN Z G, YUAN C, HU Z R, et al.Experimental study on different preheating methods for the cold-start of PEMFC stacks[J]. Energy, 2018, 162: 1029-1040.
[6] RIOS G M, SCHIRMER J, GENTNER C, et al.Efficient thermal management strategies for cold starts of a proton exchange membrane fuel cell system[J]. Applied energy, 2020, 279: 115813.
[7] LUO M Z, ZHANG J, ZHANG C Z, et al.Cold start investigation of fuel cell vehicles with coolant preheating strategy[J]. Applied thermal engineering, 2021, 201: 117816.
[8] GUO H P, SUN S C, YU H M, et al.Proton exchange membrane fuel cell subzero start-up with hydrogen catalytic reaction assistance[J]. Journal of power sources, 2019, 429: 180-187.
[9] 鲜亮, 肖建, 贾俊波, 等. 质子交换膜燃料电池冷启动模型研究[J]. 太阳能学报, 2011, 32(12): 1857-1863.
XIAN L, XIAO J, JIA J B, et al.Study on cold-start modeling of proton exchange membrane fuel cell[J]. Acta energiae solaris sinica, 2011, 32(12): 1857-1863.
[10] MENG H.A pem fuel cell model for cold-start simulations[J]. Journal of power sources, 2008, 178(1): 141-150.
[11] MEMG H.Numerical analyses of non-isothermal self-start behaviors of PEM fuel cells from subfreezing startup temperatures[J]. International journal of hydrogen energy, 2008, 33(20): 5738-5747.
[12] BALLIET R J, NEWMAN J.Cold start of a polymer-electrolyte fuel cell i. development of a two-dimensional model[J]. Journal of the electrochemical society, 2011, 158(8): B927-B938.
[13] BALLIET R J, NEWMAN J.Cold start of a polymer-electrolyte fuel cell iii. optimization of operational and configurational parameters[J]. Journal of the electrochemical society, 2011, 158(8): B948-B956.
[14] GUO Q, LUO Y, JIAO K.Modeling of assisted cold start processes with anode catalytic hydrogen-oxygen reaction in proton exchange membrane fuel cell[J]. International journal of hydrogen energy, 2013, 38(2): 1004-1015.
[15] JIANG H L, XU L F, STRUCHTRUP H, et al.Modeling of fuel cell cold start and dimension reduction simplification method[J]. Journal of the electrochemical society, 2020, 167(4): 044501.
PDF(1763 KB)

Accesses

Citation

Detail

Sections
Recommended

/