RESEARCH ON ANTIREFLECTION AND LIGHT TRAPPING PROPERTIES FOR DIELECTRIC NANOSTRUCTURES ON ULTRATHIN CRYSTALLINE SILICON SOLAR CELLS

Wang Yanyan, Qian Min, Jiang Xiaohui, Zhang Ruiying, Wu Xuemei

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (7) : 135-140.

PDF(2215 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2215 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (7) : 135-140. DOI: 10.19912/j.0254-0096.tynxb.2022-0323

RESEARCH ON ANTIREFLECTION AND LIGHT TRAPPING PROPERTIES FOR DIELECTRIC NANOSTRUCTURES ON ULTRATHIN CRYSTALLINE SILICON SOLAR CELLS

  • Wang Yanyan1,2, Qian Min1, Jiang Xiaohui3, Zhang Ruiying2, Wu Xuemei4
Author information +
History +

Abstract

This research is dedicated to the improvement of the dielectric nanostructures decorated ultrathin crystalline silicon (c-Si) solar cells with broadband antireflection and enhanced absorption ability. Finite difference time domain (FDTD) method is used to simulate the effects of nanostructures with different sidewall profile on the broadband antireflection and enhanced absorption ability for the solar cells. Further analysis is implemented for the antireflection and light trapping mechanisms of the dielectric nanostructures decorated ultrathin c-Si solar cells with the help of the simulated field intensity distribution data. The results show that the dielectric nanostructures decorated c-Si solar cells presented improved light absorptance ability compared with the single antireflection layer (SARL) decorated cells, owing to the combination of multiple modes including Mie resonance scattering, Fabry-Perot resonance, ect., with the absorption even surpasses the Yablonovitch limit at some wavelengths range.

Key words

antireflection coatings / light absorption / FDTD methods / dielectric nanostructures / ultrathin c-Si solar cells

Cite this article

Download Citations
Wang Yanyan, Qian Min, Jiang Xiaohui, Zhang Ruiying, Wu Xuemei. RESEARCH ON ANTIREFLECTION AND LIGHT TRAPPING PROPERTIES FOR DIELECTRIC NANOSTRUCTURES ON ULTRATHIN CRYSTALLINE SILICON SOLAR CELLS[J]. Acta Energiae Solaris Sinica. 2023, 44(7): 135-140 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0323

References

[1] GAUCHER A, CATTONI A, DUPUIS C, et al.Ultrathin epitaxial silicon solar cells with inverted nanopyramid arrays for efficient light trapping[J]. Nano letters, 2016, 16(9): 5358-5364.
[2] LI Y, LI Y K, WANG X X, et al.Ultrathin c-Si solar cells based on microcavity light trapping scheme[J]. Optical and quantum electronics, 2019, 51(5): 138.
[3] TANG Q T, SHEN H L, YAO H Y, et al.Cu-assisted chemical etching of bulk c-Si: a rapid and novel method to obtain 45 μm ultrathin flexible c-Si solar cells with asymmetric front and back light trapping structures[J]. Solar energy, 2018, 170: 263-272.
[4] ZHOU S Q, YANG Z H, GAO P Q, et al.Wafer-scale integration of inverted nanopyramid arrays for advanced light trapping in crystalline silicon thin film solar cells[J]. Nanoscale research letters, 2016, 11: 194.
[5] LEE H S, SUK J, KIM H, et al.Enhanced efficiency of crystalline Si solar cells based on kerfless-thin wafers with nanohole arrays[J]. Scientific reports, 2018, 8: 3504.
[6] HE J, HOSSAIN M A, LIN H, et al.15% efficiency ultrathin silicon solar cells with fluorine-doped titanium oxide and chemically tailored poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) as asymmetric heterocontact[J]. ACS nano, 2019, 13(6): 6356-6362.
[7] MEYER A R, CHAUKULKAR R P, LEICK N, et al.Chemical passivation of crystalline Si by Al2O3 deposited using atomic layer deposition: implications for solar cells[J]. ACS applied nano materials, 2021, 4(7): 6629-6636.
[8] SONG H, OHDAIRA K. Passivation effect of ultra-thin SiNx films formed by catalytic chemical vapor deposition for crystalline silicon surface[J]. Japanese journal of applied physics, 2018, 57(8S3): 08RB03.
[9] 张云龙, 陈新亮, 周忠信, 等. 晶体硅太阳电池研究进展[J]. 太阳能学报, 2021, 42(10): 49-60.
ZHANG Y L, CHEN X L, ZHOU Z X, et al.Research progress of crystalline silicon solar cells[J]. Acta energiae solaris sinica, 2021, 42(10): 49-60.
[10] 石强, 单伟, 胡金艳, 等. 双层SiNx:H减反膜多晶硅太阳电池及其组件性能研究[J]. 太阳能学报, 2015, 36(1): 108-112.
SHI Q, SHAN W, HU J Y, et al.Polycystal line solar cell with double SiNx:H anti-reflection film and its modules performance[J]. Acta energiae solaris sinica, 2015, 36(1): 108-112.
[11] WANG Y Y, YE X J, ZHU J, et al.Efficiency improvement of flexible a-SiGe:H solar cells decorated by SiNx composite nanostructures[J]. Optics communications, 2015, 343: 178-182.
[12] WANG Y Y, ZHANG R Y, ZHANG Z, et al.Efficiency improvement of GaInP solar cells by broadband omnidirectional antireflection through dielectric composite nanostructures[J]. Solar energy materials and solar cells, 2017, 169: 33-39.
[13] SUN T Y, TU J, GAO L, et al.Sidewall profile dependent nanostructured ultrathin solar cells with enhanced light trapping capabilities[J]. IEEE photonics journal, 2019, 12(1): 1-12.
[14] ZHONG S H, WANG W J, ZHUANG Y F, et al.All-solution-processed random Si nanopyramids for excellent light trapping in ultrathin solar cells[J]. Advanced functional materials, 2016, 26(26): 4768-4777.
[15] LIN Y Y, XU Z, YU D L, et al.Dual-layer nanostructured flexible thin-film amorphous silicon solar cells with enhanced light harvesting and photoelectric conversion efficiency[J]. ACS applied materials & interfaces, 2016, 8(17): 10929-10936.
[16] BRONGERSMA M, CUI Y, FAN S H.Light management for photovoltaics using high-index nanostructures[J]. Nature materials, 2014, 13(5): 451-460.
PDF(2215 KB)

Accesses

Citation

Detail

Sections
Recommended

/