ANALYSIS OF CONCENTRATING PERFORMANCE OF SOLAR FURNACE BASED ON OPTICAL-STRUCTURAL COUPLING

Huang Penglin, Zang Chuncheng, Wang Zhifeng, Sun Feihu, Gong Bo, Bai Fengwu

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (7) : 264-270.

PDF(2989 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2989 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (7) : 264-270. DOI: 10.19912/j.0254-0096.tynxb.2022-0333

ANALYSIS OF CONCENTRATING PERFORMANCE OF SOLAR FURNACE BASED ON OPTICAL-STRUCTURAL COUPLING

  • Huang Penglin1-3, Zang Chuncheng1-3, Wang Zhifeng1-3, Sun Feihu1-3, Gong Bo1-3, Bai Fengwu1-3
Author information +
History +

Abstract

Taking the point focus solar furnace as the research object, the optical-structural coupling is proposed, and the simulation calculation model of energy flow density distribution is established. The flux density simulation distribution analysis is carried out under the ideal conditions, considering the action of gravity and wind load and the measured surface condition of the solar furnace, and the measured research of flux density distribution is carried out. The results show that for the solar furnace system, the influence of gravity on the concentrating performance is small, about 5%; The installation error and wind-induced deformation have a great impact on the condensing performance, about 11% and 25%, respectively. Through the comparison between theoretical prediction and experimental results, it is proposed to correct the error factor of concentrator in the software prediction model by 9 mrad.

Key words

solar furnaces / ray tracing / wind effects / optical-structural coupling / optical performance / flux density distribution

Cite this article

Download Citations
Huang Penglin, Zang Chuncheng, Wang Zhifeng, Sun Feihu, Gong Bo, Bai Fengwu. ANALYSIS OF CONCENTRATING PERFORMANCE OF SOLAR FURNACE BASED ON OPTICAL-STRUCTURAL COUPLING[J]. Acta Energiae Solaris Sinica. 2023, 44(7): 264-270 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0333

References

[1] 张喜良, 崔芝瑛, 臧春城, 等. 点聚焦太阳炉设计方法与研制实践[J]. 新能源进展, 2018, 6(4): 288-296.
ZHANG X L, CUI Z Y, ZANG C C, et al.Development and design method of point focus solar furnace[J]. Advances in new and renewable energy, 2018, 6(4): 288-296.
[2] NEUMANN A, GROER U.Experimenting with concentrated sunlight using the DLR solar furnace[J]. Solar energy, 1996, 58(4): 181-190.
[3] BONANOS A M.Error analysis for concentrated solar collectors[J]. Journal of renewable and sustainable energy, 2012, 4(6): 063125.
[4] EL YDRISSI M, GHENNIOUI H, BENNOUNA E G, et al.A review of optical errors and available applications of deflectometry technique in solar thermal power applications[J]. Renewable and sustainable energy reviews, 2019, 116: 109438.
[5] WINTER C J, SIZMANN R L, VANT-HULL L L. Solar power plants: fundamentals, technology, systems, economics[M]. New York: Springer Science & Business Media, 2012.
[6] MEYEN S, LUPFERT E, FERNáNDEZ-GARCíA A, et al. Standardization of solar mirror reflectance measurements-round robin test[R]. National Renewable Energy Lab(NREL), Golden, CO(United States), 2010.
[7] GUO M H, WANG Z F, ZHANG J H, et al.Accurate altitude-azimuth tracking angle formulas for a heliostat with mirror-pivot offset and other fixed geometrical errors[J]. Solar energy, 2011, 85(5): 1091-1100.
[8] 崔芝瑛. 太阳炉光学设计方法与固体颗粒吸热器的研究[D]. 北京: 中国科学院大学, 2019.
CUI Z Y.Preliminary study on optical design method of solar furnace and solid particle heat absorber[D]. Beijing: University of Chinese Academy of Sciences, 2019.
[9] PFAHL A, BUSELMEIER M, ZASCHKE M.Wind loads on heliostats and photovoltaic trackers of various aspect ratios[J]. Solar energy, 2011, 85(9): 2185-2201.
[10] GONG B, WANG Z F, LI Z N, et al.Fluctuating wind pressure characteristics of heliostats[J]. Renewable energy, 2013, 50: 307-316.
[11] EMES M J, ARJOMANDI M, GHANADI F, et al.Effect of turbulence characteristics in the atmospheric surface layer on the peak wind loads on heliostats in stow position[J]. Solar energy, 2017, 157: 284-297.
[12] EMES M J, JAFARI A, COVENTRY J, et al.The influence of atmospheric boundary layer turbulence on the design wind loads and cost of heliostats[J]. Solar energy, 2020, 207: 796-812.
[13] BLUME K, RÖGER M, SCHLICHTING T, et al. Dynamic photogrammetry applied to a real scale heliostat: insights into the wind-induced behavior and effects on the optical performance[J]. Solar energy, 2020, 212: 297-308.
[14] YUAN J K, CHRISTIAN J M, HO C K. Compensation of gravity induced heliostat deflections for improved optical performance[J]. Journal of solar energy engineering, 2013, 137(2): 021016-1-021016-8.
[15] 颜健, 彭佑多, 余佳焕, 等. 碟式太阳能光热系统光-机-热多场耦合建模及其聚光性能预测应用[J]. 机械工程学报, 2015, 51(14): 138-151.
YAN J, PENG Y D, YU J H, et al.Research on thermal-structural-optical multi-field coupling modeling and concentrating performance predication of solar dish system[J]. Journal of mechanical engineering, 2015, 51(14): 138-151.
[16] ROLDÁN M I, MONTERREAL R. Heat flux and temperature prediction on a volumetric receiver installed in a solar furnace[J]. Applied energy, 2014, 120: 65-74.
[17] CHU S Z, BAI F W, ZHANG X L, et al.Experimental study and thermal analysis of a tubular pressurized air receiver[J]. Renewable energy, 2018, 125: 413-424.
PDF(2989 KB)

Accesses

Citation

Detail

Sections
Recommended

/