SHORT-TERM WIND POWER PREDICTION BASED ON TEMPORAL CONVOLUTIONAL NETWORK RESIDUAL CORRECTION MODEL

Su Liancheng, Zhu Jiaojiao, Li Yingwei

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (7) : 427-435.

PDF(2190 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2190 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (7) : 427-435. DOI: 10.19912/j.0254-0096.tynxb.2022-0380

SHORT-TERM WIND POWER PREDICTION BASED ON TEMPORAL CONVOLUTIONAL NETWORK RESIDUAL CORRECTION MODEL

  • Su Liancheng1, Zhu Jiaojiao1, Li Yingwei2
Author information +
History +

Abstract

A short-term wind power prediction method based on temporal convolutional network residual correction model is proposed to improve the accuracy of short-term wind power prediction. Firstly, using the complete ensemble empirical mode decomposition with adaptive noise algorithm to separate the local characteristic information of original wind power data, each component is predicted by the support vector regression model which is optimized by grid search and cross-validation algorithm. Secondly, a temporal convolutional network residual prediction model is constructed, and the gray correlation analysis method is used to select the input features of the residual prediction model to correct the support vector regression prediction results. Finally, based on the proposed model, the actual operating power of a wind farm is predicted and compared with the prediction accuracy of other methods. The results verify that the proposed method improves the accuracy of short-term wind power prediction.

Key words

wind power prediction / complete ensemble empirical mode decomposition with adaptive noise / temporal convolutional network / grey relational analysis / residual correction

Cite this article

Download Citations
Su Liancheng, Zhu Jiaojiao, Li Yingwei. SHORT-TERM WIND POWER PREDICTION BASED ON TEMPORAL CONVOLUTIONAL NETWORK RESIDUAL CORRECTION MODEL[J]. Acta Energiae Solaris Sinica. 2023, 44(7): 427-435 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0380

References

[1] ABHINAV R, PINDORIYA N M, WU J Z, et al.Short-term wind power forecasting using wavelet-based neural network[J]. Energy procedia, 2017, 142: 455-460.
[2] OOKURA S, MORI H.An efficient method for wind power generation forecasting by LSTM in consideration of overfitting prevention[J]. IFAC-papers online, 2020, 53(2): 12169-12174.
[3] 薛阳, 王琳, 王舒, 等. 一种结合CNN和GRU网络的超短期风电预测模型[J]. 可再生能源, 2019, 37(3): 456-462.
XUE Y, WANG L, WANG S, et al.An ultra-short-term wind power forecasting model combined with CNN and GRU networks[J]. Renewable energy resources, 2019, 37(3): 456-462.
[4] YIN H, OU Z H, HUANG S Q, et al.A cascaded deep learning wind power prediction approach based on a two-layer of mode decomposition[J]. Energy, 2019, 189: 116316.
[5] LI L L, CHANG Y B, TSENG M L, et al.Wind power prediction using a novel model on wavelet decomposition-support vector machines-improved atomic search algorithm[J]. Journal of cleaner production, 2020, 270: 121817.
[6] HE Y Y, WANG Y.Short-term wind power prediction based on EEMD-LASSO-QRNN model[J]. Applied soft computing, 2021, 105: 107288.
[7] HUANG N E, SHEN Z, LONG S R, et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings mathematical physical & engineering sciences, 1998, 454(1971): 903-995.
[8] 谢丽蓉, 王斌, 包洪印, 等. 基于EEMD-WOA-LSSVM的超短期风电功率预测[J]. 太阳能学报, 2021, 42(7): 290-296.
XIE L R, WANG B, BAO H Y, et al.Super-short-term wind power forecasting based on EEMD-WOA-LSSVM[J]. Acta energiae solaris sinica, 2021, 42(7): 290-296.
[9] VAPNIK V.The nature of statistical learning theory[M]. New York: Springer Science & Business Media, 2013: 35-52.
[10] 李大中, 李颖宇. 基于深度学习与误差修正的超短期风电功率预测[J]. 太阳能学报, 2021, 42(12): 200-205.
LI D Z, LI Y Y.Ultra-short-term wind power prediction based on deep learning and error correction[J]. Acta energiae solaris sinica, 2021, 42(12): 200-205.
[11] LIU Q L, CHE X J, BIE M.R-STAN: residual spatial-temporal attention network for action recognition[J]. IEEE access, 2019, 7: 82246-82255.
[12] KUMAR P, HATI A S.Dilated convolutional neural network based model for bearing faults and broken rotor bar detection in squirrel cage induction motors[J]. Expert systems with applications, 2022, 191: 116290.
[13] 景惠甜. 基于深度学习的风电功率预测研究[D]. 徐州: 中国矿业大学, 2021.
JING H T.Research on wind power prediction based on deep learning[D]. Xuzhou: China University of Mining, 2021.
[14] ZHU R J, LIAO W L, WANG Y S.Short-term prediction for wind power based on temporal convolutional network[J]. Energy reports, 2020, 6: 424-429.
[15] CARRERAS M, DERIU G, RAFFO L, et al.Optimizing temporal convolutional network inference on FPGA-based accelerators[J]. IEEE journal on emerging and selected topics in circuits and systems, 2020, 10(3): 348-361.
[16] XU G, YANG Z T.Multiobjective optimization of process parameters for plastic injection molding via soft computing and grey correlation analysis[J]. The international journal of advanced manufacturing technology, 2015, 78: 525-536.
[17] 储震, 杨桂元. 一类基于相关性准则的广义加权组合评价模型[J]. 统计与决策, 2018, 34(19): 18-22.
CHU Z, YANG G Y.A kind of generalized weighted combination evaluation models based on correlation criterion[J]. Statistics & decision, 2018, 34(19): 18-22.
PDF(2190 KB)

Accesses

Citation

Detail

Sections
Recommended

/