POTENTIAL ANALYSIS OF DISTRIBUTED PV SYSTEMS ON ROOF OF TYPICAL RESIDENTIAL BUILDING IN URBAN AREA

Yu Ying, Yao Xing, Chou Jinshuai, Yang Liu

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (7) : 182-190.

PDF(2730 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2730 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (7) : 182-190. DOI: 10.19912/j.0254-0096.tynxb.2022-0382

POTENTIAL ANALYSIS OF DISTRIBUTED PV SYSTEMS ON ROOF OF TYPICAL RESIDENTIAL BUILDING IN URBAN AREA

  • Yu Ying1, Yao Xing1, Chou Jinshuai1, Yang Liu2
Author information +
History +

Abstract

This paper takes the example of multi-storey residential buildings in eight urban areas in China, calculation of photovoltaic power generation and building energy consumption with typical meteorological year data. PVsyst is used to complete the distributed PV system design, and Energy Plus is used to establish the multi-story building energy consumption model. The power generation potential is analyzed in terms of electrical energy autonomy, carbon reduction and economic analysis indicators NPV and BCR. The results show that Kunming and Lhasa have the highest degree of contribution of distributed PV to buildings and Sanya has the lowest, Harbin and Lhasa have high carbon emission reduction revenue potential. There are differences in the economics of distributed PV systems in eight areas with different system configurations and operating methods, but the highest returns are generally chosen for a 30% self-use ratio. In summary, the PV system in mild areas under Class II solar resource area and cold areas under Class I have high contribution, and hot summer and warm winter areas have low. In areas with small power generation and large difference between sales and on grid price, the configuration and operation mode of photovoltaic system have a great impact on economy.

Key words

PV / distributed power generation / economic analysis / building energy consumption / degree of autonomy

Cite this article

Download Citations
Yu Ying, Yao Xing, Chou Jinshuai, Yang Liu. POTENTIAL ANALYSIS OF DISTRIBUTED PV SYSTEMS ON ROOF OF TYPICAL RESIDENTIAL BUILDING IN URBAN AREA[J]. Acta Energiae Solaris Sinica. 2023, 44(7): 182-190 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0382

References

[1] GERNAAT D, BOER H D, DAMMEIER L C, et al.The role of residential rooftop photovoltaic in long-term energy and climate scenarios[J]. Applied energy, 2020, 279: 115705.
[2] 胡俊新. 分布式光伏发电系统安装过程中对屋面的影响及用电安全分析[J]. 智能城市, 2018, 4(4): 54-55.
HU J X.Analysis of the impact on roofing and electrical safety during the installation of distributed photovoltaic power generation systems[J]. Intelligent city, 2018, 4(4): 54-55.
[3] 何书耘. 气象因素对太阳能利用的影响研究[D]. 长沙: 湖南大学, 2018.
HE S Y.Influence of meteorological factors on solar power utilization[D]. Changsha: Hunan University, 2018.
[4] 张子豪. 工业型街区太阳能光伏利用潜力及设计策略研究[D]. 武汉: 华中科技大学, 2019.
ZHANG Z H.Research on solar PV utilization potential and design strategy in industrial block[D]. Wuhan: Huazhong University of Science & Technology, 2019.
[5] VULKAN A, KLOOG I, DORMAN M, et al.Modeling the potential for PV installation in residential buildings in dense urban areas[J]. Energy and buildings, 2018, 169: 97-109.
[6] CHEN H, CHEN W Y.Status, trend, economic and environmental impacts of household solar photovoltaic development in China: modelling from subnational perspective[J]. Applied energy, 2021, 303: 117616.
[7] LIU C P, XU W, LI A G, et al.Energy balance evaluation and optimization of photovoltaic systems for zero energy residential buildings in different climate zones of China[J]. Journal of cleaner production, 2019, 235: 1202-1215.
[8] 王崇. 基于PVsyst的户用型光伏发电系统设计与仿真研究[D]. 沈阳: 沈阳农业大学, 2018.
WANG C.Design and simulation of household photovoltaic power generation system based on PVsyst[D]. Shenyang: Shenyang Agricultural University, 2018.
[9] BAKHSHI-JAFARABADI R, SADEH J, DEHGHAN M.Economic evaluation of commercial grid-connected photovoltaic systems in the Middle East based on experimental data: a case study in Iran[J]. Sustainable energy technologies and assessments, 2020, 37: 100581.
[10] BIANCHINI A, GAMBUTI M, PELLEGRINI M, et al.Performance analysis and economic assessment of different photovoltaic technologies based on experimental measurements[J]. Renewable energy, 2016, 85(1): 1-11.
[11] 左丽丽. 碳交易模式下家庭屋顶分布式光伏发电的投资价值研究[D]. 合肥: 合肥工业大学, 2020.
ZUO L L.Research on the investment value of household rooftop distributed photovoltaic power generation under carbon trading mode[D]. Hefei: Hefei University of Technology, 2020.
[12] YE B, YANG P, JIANG J J, et al.Feasibility and economic analysis of a renewable energy powered special town in China[J]. Resources, conservation and recycling, 2017, 121: 40-50.
[13] 陈梓毅, 曹烨, 邱国玉. 城市分布式光伏发电的经济和环境效益实证分析[J]. 生态经济, 2018, 34(6): 100-105.
CHEN Z Y, CAO Y, QIU G Y.Empirical analysis on economic and environmental benefit of urban distributed PV[J]. Ecological economy, 2018, 34(6): 100-105.
[14] GB/T 31155—2014, 太阳能资源等级#总辐射[S].
GB/T 31155—2014, Classification of solar energy resources—Global radiation[S].
[15] GB 50176—2016, 民用建筑热工设计规范[S].
GB 50176—2016, Code for thermal design of civil building[S].
[16] SUN J T, LI Z R, XIAO F, et al.Generation of typical meteorological year for integrated climate based daylight modeling and building energy simulation[J]. Renewable energy, 2020, 160: 721-729.
[17] HALL I J, PRAIRIE R R, ANDERSON H E, et al.Generation of a typical meteorological year[R]. Sandia Labs., Albuquerque, NM(USA), 1978.
[18] 李红莲. 建筑能耗模拟用典型气象年研究[D]. 西安: 西安建筑科技大学, 2016.
LI H L.Research on the typical meteorological year for building energy consumption simulation[D]. Xi’an: Xi’an University of Architecture and Technology, 2016.
[19] YAN J Y, YANG Y, CAMPANA P E, et al.City-level analysis of subsidy-free solar photovoltaic electricity price, profits and grid parity in China[J]. Nature energy, 2019, 4(8): 709-717.
[20] 林阿依. 屋顶光伏与储能一体化发电系统设计研究[D]. 北京: 华北电力大学, 2015.
LIN A Y.Design research on power generation system integrated rooftop photovoltaic and energy storages[D]. Beijing: North China Electric Power University, 2015.
[21] RODRIGUES S, CHEN X J, MORGADO-DIAS F.Economic analysis of photovoltaic systems for the residential market under China’s new regulation[J]. Energy policy, 2017, 101: 467-472.
[22] 张琳. 分布式光伏发电在城市建筑中的设计应用及可行性探讨[J]. 上海建设科技, 2019(4): 8-11, 15.
ZHANG L.Design, application and feasibility of distributed photovoltaic power generation in urban buildings[J]. Shanghai construction science & technology, 2019(4): 8-11, 15.
[23] 胡孟杰, 陈国定, 黄学宇, 等. 基于市电补偿的光伏逆变器[J]. 太阳能学报, 2015, 36(7): 1610-1615.
HU M J,CHEN G D, HUANG X Y, et al.Photovoltaic inverter based on power compensation[J]. Acta energiae solaris sinica, 2015, 36(7): 1610-1615.
[24] 李顺, 贺广零, 任要中, 等. 光伏组件横向和竖向布置技术经济对比分析[J]. 南方能源建设, 2017, 4(4): 113-117.
LI S, HE G L, REN Y Z, et al.Technical economics comparison between PV module under vertical & horizontal arrangement[J]. Southern energy construction, 2017, 4(4): 113-117.
[25] 卢倩楠. 绿色建筑中太阳能光伏发电系统的设计研究[D]. 西安: 长安大学, 2016.
LU Q N.Research and design of photovoltaic system of the green building[D]. Xi’an: Chang’an University, 2016.
[26] 张怡洁, 刘星, 陈振武, 等. 分布式光伏储能系统的设计方法及运行特性[J]. 化工学报, 2021, 72(S1): 503-511.
ZHANG Y J, LIU X, CHEN Z W, et al.Sizing method and operating characteristics of distributed photovoltaic battery system[J]. CIESC journal, 2021, 72(S1): 503-511.
[27] CHEN Q, KUANG Z H, LIU X H, et al.Energy storage to solve the diurnal, weekly, and seasonal mismatch and achieve zero-carbon electricity consumption in buildings[J]. Applied energy, 2022, 312: 118744.
[28] GB 50034—2013, 建筑照明设计标准[S].
GB 50034—2013, Standard for lighting design of buildings[S].
[29] 刘常平. 中国零能耗居住建筑与光伏系统能源匹配特性研究[D]. 西安: 西安建筑科技大学, 2020.
LIU C P.Research on energy matching characteristics between zero energy residential building and photovoltaic systems in China[D]. Xi’an: Xi’an University of Architecture and Technology, 2020.
PDF(2730 KB)

Accesses

Citation

Detail

Sections
Recommended

/