DESIGN AND CONTROL OF WIND-HYDROGEN COUPLED SYSTEM BASED ON CHAIN DISTRIBUTION STRATEGY

Lu Xinyu, Du Banghua, Zhao Bo, Zhang Leiqi, Xie Changjun

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (6) : 405-413.

PDF(2206 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2206 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (6) : 405-413. DOI: 10.19912/j.0254-0096.tynxb.2022-0404

DESIGN AND CONTROL OF WIND-HYDROGEN COUPLED SYSTEM BASED ON CHAIN DISTRIBUTION STRATEGY

  • Lu Xinyu1, Du Banghua1, Zhao Bo2, Zhang Leiqi2, Xie Changjun1
Author information +
History +

Abstract

Aiming at the problem of "abandoned wind" power coupled hydrogen production in wind power generation, this paper proposes a wind-hydrogen coupling system based on a chain distribution strategy. Firstly, a wind-hydrogen coupling topology circuit structure that can characterize the main characteristics of the abandoned wind power and the proton exchange membrane electrolyzer is established. And then, a wind-hydrogen coupling system is built around a modified interleaved buck converter with extended duty cycle. And the same time, a chain power distribution strategy is proposed for the wind-hydrogen coupling system of the multi-stack proton exchange membrane electrolyzer. Finally, it is verified by simulation that the system improves the utilization rate and reliability of abandonment wind, and effectively solves the problem of coupling control and power distribution of water electrolysis for hydrogen production from abandonment wind power.

Key words

wind power / hydrogen production / buck converter / electrolyzer / wind-hydrogen coupled system / chain distribution

Cite this article

Download Citations
Lu Xinyu, Du Banghua, Zhao Bo, Zhang Leiqi, Xie Changjun. DESIGN AND CONTROL OF WIND-HYDROGEN COUPLED SYSTEM BASED ON CHAIN DISTRIBUTION STRATEGY[J]. Acta Energiae Solaris Sinica. 2022, 43(6): 405-413 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0404

References

[1] 国家能源局. 我国风电并网装机突破3亿千瓦[EB/OL].http://www.nea.gov.cn/2021-11/30/c_1310343188.htm.
National Energy Administration.China’s wind power grid-connected installed capacity exceeds 300 million kilowatts[EB/OL]. http://www.nea.gov.cn/2021-11/30/c_1310343188.htm.
[2] 孔令国, 蔡国伟, 李龙飞, 等. 风光氢综合能源系统在线能量调控策略与实验平台搭建[J]. 电工技术学报, 2018, 33(14): 3371-3384.
KONG L G, CAI G W, LI L F, et al.Online energy control strategy and experimental platform of integrated energy system of wind, photovoltaic and hydrogen[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3371-3384.
[3] GLENK G, REICHELSTEIN S.Economics of converting renewable power to hydrogen[J]. Nature energy, 2019, 4(3): 216-222.
[4] FANG R, LIANG Y.Control strategy of electrolyzer in a wind-hydrogen system considering the constraints of switching times[J]. International journal of hydrogen energy, 2019, 44(46): 25104-25111.
[5] MIKOVITS C, WETTERLUND E, WEHRLE S, et al.Stronger together: multi-annual variability of hydrogen production supported by wind power in Sweden[J]. Applied energy, 2021, 282: 116082.
[6] DINH V N, LEAHY P, MCKEOGH E, et al.Development of a viability assessment model for hydrogen production from dedicated offshore wind farms[J]. International journal of hydrogen energy, 2020, 46(48): 24620-24631.
[7] 郭小强, 魏玉鹏, 万燕鸣, 等. 新能源制氢电力电子变换器综述[J]. 电力系统自动化, 2021, 45(20): 185-199.
GUO X Q, WEI Y P, WAN Y M, et al.Review on power electronic converters for producing hydrogen from renewable energy sources[J]. Automation of electric power systems, 2021, 45(20): 185-199.
[8] GUILBERT D, COLLURA S M, SCIPIONI A.DC/DC converter topologies for electrolyzers: state-of-the-art and remaining key issues[J]. International journal of hydrogen energy, 2017, 42(38): 23966-23985.
[9] 吴优, 付立军, 侍乔明, 等. 直驱永磁风电机组虚拟惯量控制简化实验方法[J]. 太阳能学报, 2017, 38(5): 1361-1368.
WU Y, FU L J, SHI Q M, et al.A simplified experimental method of d-pmsg with virtual inertial control[J]. Acta energiae solaris sinic, 2017, 38(5): 1361-1368.
[10] BUTTLER A, SPLIETHOFF H.Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review[J]. Renewable & sustainable energy reviews, 2018, 82(3): 2440-2454.
[11] OMEZ A G, RAMIREZ V, GUILBERT D.Investigation of PEM electrolyzer modeling: electrical domain, efficiency, and specific energy consumption[J]. International journal of hydrogen energy, 2020, 45(29): 14625-14639.
[12] FALCO D S, PINTO A.A review on PEM electrolyzer modelling: guidelines for beginners[J]. Journal of cleaner production, 2020, 261: 121184.
[13] MANCERA J, SEGURA F, MARQUEZ J, et al.An optimized balance of plant for a medium-size PEM electrolyzer: design, control and physical implementation[J]. Electronics, 2020, 9(871): 1-27.
[14] GUILBERT D, VITALE G.Dynamic emulation of a PEM electrolyzer by time constant based exponential model[J]. Energies, 2019, 12(4): 1-17.
[15] 杨惠, 骆姗, 孙向东, 等. 光伏储能双向DC-DC变换器的自抗扰控制方法研究[J]. 太阳能学报, 2018, 39(5): 1342-1350.
YANG H, LUO S, SUN X D, et al.Research on ADRC method for bidirectional DC-DC converter of solar energy storage system[J]. Acta energiae solaris sinic, 2018, 39(5): 1342-1350.
[16] YIGIT T, SELAMET O F.Mathematical modeling and dynamic imulink simulation of high-pressure PEM electrolyzer system[J]. International journal of hydrogen energy, 2016, 41(32): 13901-13914.
[17] GUILBERT D, SORBERA D, VITALE G.A stacked interleaved DC-DC buck converter for proton exchange membrane electrolyzer applications: design and experimental validation[J]. International journal of hydrogen energy, 2019, 45(1): 64-79.
[18] PAN C, CHUANG C, CHU C.A novel transformerless interleaved high step-down conversion ratio DC-DC converter with low switch voltage stress[J]. IEEE transactions on industrial electronics, 2014, 61(10): 5290-5299.
[19] 汪纪锋. 电力电子技术[M]. 重庆: 重庆大学出版社, 2019, 204.
WANG J F.Power electronics technology[M]. Chongqing: Chongqing University Press, 2019, 204.
[20] 邓卫, 裴玮, 孔力, 等. 基于多端直流的可再生能源制氢系统运行控制[J]. 太阳能学报, 2022, 43(3): 27-35.
DENG W, PEI W, KONG L, et al.Operation control of renewable energy/hydrogen production system based on multi-terminal DC[J]. Acta energiae solaris sinic, 2022, 43(3): 27-35.
[21] 朱亚男, 李奇, 黄文强, 等. 基于功率自适应分配的多堆燃料电池系统效率协调优化控制[J]. 中国电机工程学报, 2019, 39(6): 1714-1722, 1868.
ZHU Y N, LI Q, HUANG W Q, et al.Efficiency coordination and optimization control method of multi-stack fuel cell systems based on power adaptive allocation[J]. Proceedings of the CSEE, 2019, 39(6): 1714-1722, 1868.
[22] 李奇, 刘强, 李艳昆, 等. 考虑燃料电池老化的多堆自适应功率分配方法[J/OL]. 西南交通大学学报, https://kns. cnki. net/kcms/detail/51.1277. U. 20210408. 0914. 002. html.
LI Q, LIU Q, LI Y K, et al. Multi-stack adaptive power allocation method considering fuel cell aging[J/OL]. Journal of Southwest Jiaotong University, https://kns.cnki.net/kcms/detail/51.1277.U.20210408.0914.002.html.
[23] MARX N, DCT C, BOULON L, et al.Degraded mode operation of multi-stack fuel cell systems[J]. IET electrical systems in transportation, 2016, 6(1): 3-11.
PDF(2206 KB)

Accesses

Citation

Detail

Sections
Recommended

/