ANALYSIS AND IMPROVEMENT STRTEGY OF GRID-CONNECTED DAMPING CHARACTERISTIC FOR ENERGY STORAGE VSG

Shi Rongliang, Wang Bin, Huang Ji, Wang Guobin, Lan Caihua

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (7) : 30-38.

PDF(2626 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2626 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (7) : 30-38. DOI: 10.19912/j.0254-0096.tynxb.2022-0410

ANALYSIS AND IMPROVEMENT STRTEGY OF GRID-CONNECTED DAMPING CHARACTERISTIC FOR ENERGY STORAGE VSG

  • Shi Rongliang1-3, Wang Bin1, Huang Ji3, Wang Guobin2, Lan Caihua2
Author information +
History +

Abstract

In order to solve the problems that the active power dynamic oscillation and steady-state deviation under the condition of active power command and grid frequency disturbance when the energy storage virtual synchronous generator (VSG) is connected to the grid, a transient damping optimization strategy based on the active power differential feedback is proposed in this paper. The energy storage VSG control principle is given, and the grid-connected active closed-loop small-signal model of the energy storage VSG under active power command and grid frequency disturbance is established firstly. After that, the influence law of the damping coefficient on active power dynamic oscillation and steady-state deviation is analyzed. On this basis, a transient damping improvement strategy using an active power differential feedback as well as its parameter design method are given. Finally, the simulation as well as experimental comparison results are used to verify the effectiveness and superiority of the damping optimization strategy in suppressing active power oscillation and eliminating steady-state deviation.

Key words

energy storage virtual synchronous generator / dynamic oscillation / steady-state deviation / transient damping / small-signal model

Cite this article

Download Citations
Shi Rongliang, Wang Bin, Huang Ji, Wang Guobin, Lan Caihua. ANALYSIS AND IMPROVEMENT STRTEGY OF GRID-CONNECTED DAMPING CHARACTERISTIC FOR ENERGY STORAGE VSG[J]. Acta Energiae Solaris Sinica. 2023, 44(7): 30-38 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0410

References

[1] 兰征, 龙阳, 曾进辉, 等.考虑超调的虚拟同步发电机暂态功率振荡抑制策略[J].电力系统自动化, 2022, 46(11): 131-141.
LAN Z, LONG Y, ZENG J H, et al.Transient power oscillation suppression strategy of virtual synchronous generator considering overshoot[J]. Automation of electric power systems, 2022, 46(11): 131-141.
[2] 石荣亮, 张烈平, 王文成, 等. 基于频率微分原理的储能变换器虚拟惯量控制策略研究[J]. 中国电机工程学报, 2021, 41(6): 2088-2101.
SHI R L, ZHANG L P, WANG W C, et al.Research on virtual inertia control strategy for energy storage converters based on a frequency derivative scheme[J]. Proceedings of the CSEE, 2021, 41(6): 2088-2101.
[3] 石荣亮. 多能互补微电网中的虚拟同步发电机(VSG)控制研究[D]. 合肥: 合肥工业大学, 2017.
SHI R L.Research on virtual synchronous generator (VSG) in the multi-energy complementary microgrid[D]. Hefei: Hefei University of Technology, 2017.
[4] LIU J, MIURA Y, BEVRANI H, et al.A unified modeling method of virtual synchronous generator for multi-operation-mode analyses[J]. IEEE journal of emerging and selected topics in power electronics, 2021, 9(2): 2394-2409.
[5] MENG X, LIU J J, LIU Z.A generalized droop control for grid-supporting inverter based on comparison between traditional droop control and virtual synchronous generator control[J]. IEEE transactions on power electronics, 2019, 34(6): 5416-5438.
[6] LIU J, MIURA Y, ISE T.Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators[J]. IEEE transactions on power electronics, 2016, 31(5): 3600-3611.
[7] WU H, RUAN X B, YANG D S, et al.Small-signal modeling and parameters design for virtual synchronous generators[J]. IEEE transactions on industrial electronics, 2016, 63(7): 4292-4303.
[8] 徐海珍, 张兴, 刘芳, 等. 基于超前滞后环节虚拟惯性的VSG控制策略[J]. 中国电机工程学报, 2017, 37(7):1918-1927.
XU H Z, ZHANG X, LIU F, et al.Virtual synchronous generator control strategy based on lead-lag link virtual inertia[J]. Proceedings of the CSEE, 2017, 37(7): 1918-1927.
[9] 杨赟, 梅飞, 张宸宇, 等. 虚拟同步发电机转动惯量和阻尼系数协同自适应控制策略[J]. 电力自动化设备,2019, 39(3): 125-131.
YANG Y, MEI F, ZHANG C Y, et al.Coordinated adaptive control strategy of rotational inertia and damping coefficient for virtual synchronous generator[J]. Electric power automation equipment, 2019, 39(3): 125-131.
[10] 王振浩, 张越, 成龙, 等. 多参数协同自适应的改进虚拟同步控制策略[J/OL]. 电网技术, DOI:10.13335/j.1000-3673.pst.2022.0246.
WANG Z H, ZHANG Y, CHENG L, et al.Improved virtual synchronization control strategy with multi-parameter collaborative adapted[J/OL]. Power system technology, DOI:10.13335/j.1000-3673.pst.2022.0246.
[11] SHI R L, ZHANG X, HU C, et al.Self-tuning virtual synchronous generator control for improving frequency stability in autonomous photovoltaic diesel microgrids[J]. Journal of modern power systems and clean energy, 2018, 6(3): 482-494.
[12] 李明烜, 王跃, 徐宁一, 等. 基于带通阻尼功率反馈的虚拟同步发电机控制策略[J]. 电工技术学报, 2018, 33(10): 2176-2185.
LI M X, WANG Y, XU N Y, et al.Control strategy of virtual synchronous generator based on band-pass damped power feedback[J]. Transactions of China Electrotechnical Society, 2018, 33(10): 2176-2185.
[13] 李新, 刘国梁, 杨苒晨, 等. 具有暂态阻尼特性的虚拟同步发电机控制策略及无缝切换方法[J]. 电网技术, 2018, 42(7): 2081-2088.
LI X, LIU G L, YANG R C, et al.Control strategy and seamless switching method of virtual synchronous generator with transient damping characteristics[J]. Power system technology, 2018, 42(7): 2081-2088.
[14] 颜湘武, 贾焦心. VSG一次调频和转速振荡阻尼的解耦控制方案[J]. 电网技术, 2019, 43(5): 1566-1575.
YAN X W, JIA J X.Decoupling control of primary frequency regulation and rotational speed damping of VSG[J]. Power system technology, 2019, 43(5): 1566-1575.
[15] 王亚维, 刘邦银, 段善旭, 等. 虚拟同步控制的暂态特性优化策略研究[J]. 中国电机工程学报, 2019, 39(20): 5885-5893, 6169.
WANG Y W, LIU B Y, DUAN S X, et al.Research on transient characteristic optimization of virtual synchronization generator control strategy[J]. Proceedings of the CSEE, 2019, 39(20): 5885-5893, 6169.
[16] 石荣亮, 张兴, 刘芳, 等. 不平衡与非线性混合负载下的虚拟同步发电机控制策略[J]. 中国电机工程学报, 2016, 36(22): 6086-6095.
SHI R L, ZHANG X, LIU F, et al.A control strategy for unbalanced and nonlinear mixed loads of virtual synchronous generators[J]. Proceedings of the CSEE, 2016, 36(22): 6086-6095.
[17] 石荣亮, 张兴, 刘芳, 等. 提高光储柴独立微网频率稳定性的虚拟同步发电机控制策略[J]. 电力系统自动化, 2016, 40(22): 77-85.
SHI R L, ZHANG X, LIU F, et al.Control strategy of virtual synchronous generator for improving frequency stability of islanded photovoltaic-battery- diesel microgrid[J]. Automation of electric power systems, 2016, 40(22): 77-85.
[18] 兰征, 龙阳, 曾进辉, 等. 引入暂态电磁功率补偿的VSG控制策略[J]. 电网技术, 2022, 46(4): 1421-1429.
LAN Z, LONG Y, ZENG J H, et al.VSG control strategy introducing transient electromagnetic power compensation[J]. Power system technology, 2022, 46(4): 1421-1429.
PDF(2626 KB)

Accesses

Citation

Detail

Sections
Recommended

/