PREDICTION OF REMAINING USEFUL LIFE OF LITHIUM-ION BATTERIES BASED ON PCA-GPR

He Bingchen, Yang Xueming, Wang Jinsong, Zhu Xu, Hu Zongjie, Liu Qiang

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (5) : 484-491.

PDF(2022 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2022 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (5) : 484-491. DOI: 10.19912/j.0254-0096.tynxb.2022-0422

PREDICTION OF REMAINING USEFUL LIFE OF LITHIUM-ION BATTERIES BASED ON PCA-GPR

  • He Bingchen1, Yang Xueming1, Wang Jinsong2, Zhu Xu1, Hu Zongjie1, Liu Qiang1
Author information +
History +

Abstract

A health indicator (HI) is extracted from the voltage-capacity curve during the charging process, which is highly correlated with the battery life. Then a PCA-GPR based prediction model for the remaining useful life of lithium-ion batteries is proposed by using principal component analysis (PCA) to analyze and downscale the multidimensional factors affecting the battery life, combined with gaussian processes regression (GPR) machine learning method. Finally, the remaining lifetime prediction of lithium-ion battery is performed and compared with PCA-BP neural network and PCA-Support vector machine (SVM) models. The results show that the HI and prediction model proposed in this paper can effectively improve the prediction accuracy of the remaining useful life of lithium-ion batteries. Among the compared prediction models, the PCA-GPR model optimized by Bayesian optimizer exhibits the best prediction performance.

Key words

lithium-ion battery / remaining useful life prediction / health indicator / principal component analysis / Gaussian regression process

Cite this article

Download Citations
He Bingchen, Yang Xueming, Wang Jinsong, Zhu Xu, Hu Zongjie, Liu Qiang. PREDICTION OF REMAINING USEFUL LIFE OF LITHIUM-ION BATTERIES BASED ON PCA-GPR[J]. Acta Energiae Solaris Sinica. 2022, 43(5): 484-491 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0422

References

[1] SCHMUCH R, WAGNER R, HÖRPEL G, et al. Performance and cost of materials for lithium-based rechargeable automotive batteries[J]. Nature energy, 2018, 3(4): 267-278.
[2] 肖珩, 李建林, 李雅欣, 等. 电化学储能电站NPC三电平变流器仿真建模研究[J/OL]. 太阳能学报, 2022: https: //t.cnki.net/kcms/detail?v=MnMdhizGfQFevSqvVOlKbc LtUyJVbWzlKzQdRb8CCZoosex4r37i55sZpYCs246NR3YEhDcz7wy8oFMlrV20gdl-KQSgdNuoU5cSddnr23mg_s VGF 10nAQ==&uniplatform=NZKPT, 1-7.
XIAO H, LI J L, LI Y X, et al. Research on simulation modeing of npc three-level converter in electrochemical battery energy storage system[J/OL]. Acta energiae solaris sinica, 2022: https://t.cnki.net/kcms/detail?v=MnMdhizGfQFevSqvVOlKbcLtUyJVbWzlKzQdRb8CCZoosex4r37i55sZpYCs246NR3YEhDcz7wy8oFMlrV20gdl-KQS gd NuoU5cSddnr23mg_sVGF10nAQ==&uniplatform=NZKPT, 1-7.
[3] 陈海生, 李泓, 马文涛, 等. 2021年中国储能技术研究进展[J]. 储能科学与技术, 2022, 11(3): 1052-1076.
CHEN H S, LI H, MA W T, et al.Research progress of energy storage technology in China in 2021[J]. Energy storage science and technology, 2022, 11(3): 1052-1076.
[4] BROUSSELY M, BIENSAN P, BONHOMME F, et al.Main aging mechanisms in Li ion batteries[J]. Journal of power sources, 2005, 146(1): 90-96.
[5] SCHUSTER S F, BRAND M J, BERG P, et al.Lithium-ion cell-to-cell variation during battery electric vehicle operation[J]. Journal of power sources, 2015, 297: 242-251.
[6] HU X S, XU L, LIN X K, et al.Battery lifetime prognostics[J]. Joule, 2020, 4(2): 310-346.
[7] NG M F, ZHAO J, YAN Q, et al.Predicting the state of charge and health of batteries using data-driven machine learning[J]. Nature machine intelligence, 2020, 2(3): 161-170.
[8] SANKARASUBRAMANIAN S, KRISHNAMURTHY B.A capacity fade model for lithium-ion batteries including diffusion and kinetics[J]. Electrochimica acta, 2012, 70: 248-254.
[9] SINGH P, CHEN C, TAN C M, et al.Semi-empirical capacity fading model for soh estimation of Li-ion batteries[J]. Applied sciences, 2019, 9(15): 3012.
[10] 徐佳宁, 倪裕隆, 朱春波. 基于改进支持向量回归的锂电池剩余寿命预测[J]. 电工技术学报, 2021, 36(17): 3693-3704.
XU J N, NI Y L, ZHU C B.Residual life prediction of lithium-ion battery based on improved support vector regression[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3693-3704.
[11] SAHA B, GOEBEL K, CHRISTOPHERSEN J.Comparison of prognostic algorithms for estimating remaining useful life of batteries[J]. Transactions of the Institute of Measurement and Control, 2009, 31(3-4): 293-308.
[12] LI H, PAN D, CHEN C L P. Intelligent prognostics for battery health monitoring using the mean entropy and relevance vector machine[J]. IEEE transactions on cybernetics, 2014, 44(7): 851.
[13] QU J T, LIU F, MA Y X, et al.A neural-network-based method for RUL prediction and SOH monitoring of lithium-ion battery[J]. IEEE access, 2019, 7: 87178-87191.
[14] 王瀛洲, 倪裕隆, 郑宇清, 等. 基于ALO-SVR的锂离子电池剩余使用寿命预测[J]. 中国电机工程学报, 2021, 41(4): 1445-1457.
WANG Y Z, NI Y L, ZHENG Y Q, et al.Residual life Prediction of lithium-ion batteries based on ALO-SVR[J]. Proceedings of the CSEE, 2021, 41(4): 1445-1457.
[15] LI W, SENGUPTA N, DECHENT P, et al.One-shot battery degradation trajectory prediction with deep learning[J]. Journal of power sources, 2021, 506: 230024.
[16] YANG J F, XIA B, HUANG W X, et al.Online state-of-health estimation for lithium-ion batteries using constant-voltage charging current analysis[J]. Applied energy, 2018, 212: 1589-1600.
[17] HU X S, CHE Y H, LIN X K, et al.Health Prognosis for electric vehicle battery packs: A data-driven approach[J]. IEEE/ASME transactions on mechatronics, 2020, 25(6): 2622-2632.
[18] SEVERSON K A, ATTIA P M, JIN N, et al.Data-driven prediction of battery cycle life before capacity degradation[J]. Nature energy, 2019, 4(5): 383-391.
[19] LI X Y, WANG Z P, YAN J Y.Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regression[J]. Journal of power sources, 2019, 421: 56-67.
[20] YANG D, ZHANG X, PAN R, et al.A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve[J]. Journal of power sources, 2018, 384: 387-395.
[21] DENG Z W, HU X S, LIN X K, et al.General discharge voltage information enabled health evaluation for lithium-ion batteries[J]. IEEE/ASME transactions on mechatronics, 2021, 26(3): 1295-1306.
[22] DENG Z W, HU X S, LI P H, et al.Data-driven battery state of health estimation based on random partial charging data[J]. IEEE transactions on power electronics, 2022, 37(5): 5021-5031.
PDF(2022 KB)

Accesses

Citation

Detail

Sections
Recommended

/