PHOTOTHERMAL CONVERSION CHARACTERISTICS OF Fe3O4 COATED CARBON NANOTUBE FERROFLUID UNDER ACTION OF MAGNETIC FIELD

Xing Meibo, Ding Xianzhe, Jia Chaofu, Zhang Hongfa, Jing Dongliang

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (8) : 338-344.

PDF(2255 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2255 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (8) : 338-344. DOI: 10.19912/j.0254-0096.tynxb.2022-0544

PHOTOTHERMAL CONVERSION CHARACTERISTICS OF Fe3O4 COATED CARBON NANOTUBE FERROFLUID UNDER ACTION OF MAGNETIC FIELD

  • Xing Meibo, Ding Xianzhe, Jia Chaofu, Zhang Hongfa, Jing Dongliang
Author information +
History +

Abstract

In this paper, the photothermal conversion characteristics of water-based magnetic Multiwall Carbon Nanotube (MWCNT-Fe3O4) fluids were experimentally studied. MWCNT-Fe3O4 nanocomposite were synthesized by improved chemical co-precipitation method. The photothermal conversion experiments were carried out on the magnetic fluids with mass concentrations of 0.001%, 0.005%, 0.010%, 0.050, 0.100% and 0.200%, respectively. In addition, the effect of magnetic field intensity and direction on the photothermal conversion performance of magnetic fluid were investigated. The results show that the photothermal conversion efficiency increases with the increased concentration in the lower concentration range, and the 30% higher photothermal conversion efficiency than that of pure water is obtained at concentration of 0.01%. However, the photothermal conversion efficiency decreases due to the decreased light transmittance at the higher concentration. In addition, magnetic MWCNT will be oriented distribution under the action of magnetic field. The photothermal conversion efficiency is improved under the action of vertical magnetic field because its ultra-high axial thermal conductivity is consistent with temperature gradient direction to make the even temperature distribution in the fluid. The MWCNT arrangement direction is perpendicular to the temperature gradient direction, which suppresses the heat transfer in the fluid under the action of horizontal magnetic field. As a result, the photothermal conversion efficiency is reduced.

Key words

magnetic fluids / solar energy / carbon nanotubes / photo-thermal conversion / magnetic field

Cite this article

Download Citations
Xing Meibo, Ding Xianzhe, Jia Chaofu, Zhang Hongfa, Jing Dongliang. PHOTOTHERMAL CONVERSION CHARACTERISTICS OF Fe3O4 COATED CARBON NANOTUBE FERROFLUID UNDER ACTION OF MAGNETIC FIELD[J]. Acta Energiae Solaris Sinica. 2023, 44(8): 338-344 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0544

References

[1] GUPTA S K, GUPTA S.The role of nanofluids in solar thermal energy: a review of recent advances[J]. Materials today: proceedings, 2021, 44: 401-412.
[2] ZHANG H Y, WANG K X, WANG L L, et al.Mesoporous CuO with full spectrum absorption for photothermal conversion in direct absorption solar collectors[J]. Solar energy, 2020, 201: 628-637.
[3] XU X X, XU C, LIU J, et al.A direct absorption solar collector based on a water-ethylene glycol based nanofluid with anti-freeze property and excellent dispersion stability[J]. Renewable energy, 2019, 133: 760-769.
[4] JEON J, PARK S, LEE B J.Optical property of blended plasmonic nanofluid based on gold nanorods[J]. Optics express, 2014, 22(S4): 1101-1111.
[5] REDDY K S, KAMNAPURE N R, SRIVASTAVA S.Nanofluid and nanocomposite applications in solar energy conversion systems for performance enhancement: a review[J]. International journal of low-carbon technologies, 2017, 12(1): 1-23.
[6] 毛凌波, 张仁元, 柯秀芳, 等. 纳米流体太阳集热器的光热性能研究[J]. 太阳能学报, 2009, 30(12): 1647-1652.
MAO L B, ZHANG R Y, KE X F, et al.Photo-thermal properties of nanofluid-based solar collector[J]. Acta energiae solaris sinica, 2009, 30(12): 1647-1652.
[7] 周玲, 尹淼, 陈钰琦, 等. 油基CuO和HgS纳米流体的光热转换特性研究[J]. 太阳能学报, 2017, 38(6): 1620-1625.
ZHOU L, YIN M, CHEN Y Q, et al.Photothermal conversion properties of oil-based CuO and HgS nanofluids[J]. Acta energiae solaris sinica, 2017, 38(6): 1620-1625.
[8] OTANICAR T P, PHELAN P E, GOLDEN J S.Optical properties of liquids for direct absorption solar thermal energy systems[J]. Solar energy, 2009, 83(7): 969-977.
[9] BAO Z J, BING N C, ZHU X R, et al.Ti3C2Tx MXene contained nanofluids with high thermal conductivity, super colloidal stability and low viscosity[J]. Chemical engineering journal, 2021, 406: 126390.
[10] 宋景东, 孙娟, 孙斌. 太阳集热管纳米流体的光热性能实验[J]. 化工进展, 2016, 35(5): 1314-1320.
SONG J D, SUN J, SUN B.Experimental investigation on photo-thermal properties of nanofluid for the solar tube[J]. Chemical industry and engineering progress, 2016, 35(5): 1314-1320.
[11] YOUSEFI T, VEYSI F, SHOJAEIZADEH E, et al.An experimental investigation on the effect of Al2O3-H2O nanofluid on the efficiency of flat-plate solar collectors[J]. Renewable energy, 2012, 39(1): 293-298.
[12] MOOSAVI S, ZAKARIA S, CHIA C H, et al.Hydrothermal synthesis, magnetic properties and characterization of CoFe2O4 nanocrystals[J]. Ceramics international, 2017, 43(10): 7889-7894.
[13] YU X X, XUAN Y M.Investigation on thermo-optical properties of CuO/Ag plasmonic nanofluids[J]. Solar energy, 2018, 160: 200-207.
[14] LIU C Q, ZHANG L Y, HE Y, et al.Enhancement of photo-thermal conversion performance of the nanofluids through spectral complementarity between silver and cesium tungstate oxide nanoparticles[J]. Journal of thermal science, 2020, 29: 1322-1332.
[15] WANG L L, WANG M, XU Z P, et al.Well oil dispersed Au/oxygen-deficient TiO2 nanofluids towards full spectrum solar thermal conversion[J]. Solar energy materials and solar cells, 2020, 212: 110575.
[16] KHELIFA A B, KHAMLICH S, NURU Z Y, et al.Growth and characterization of spectrally selective Cr2O3/Cr/Cr2O3 multilayered solar absorber by e-beam evaporation[J]. Journal of alloys and compounds, 2018, 734: 204-209.
[17] CHEN L L, XU C, LIU J, et al.Optical absorption property and photo-thermal conversion performance of graphene oxide/water nanofluids with excellent dispersion stability[J]. Solar energy, 2017, 148: 17-24.
[18] 李富恒. 石墨烯纳米片-乙二醇纳米流体光热转化特性研究[J]. 化工学报, 2020, 71(增刊1): 479-485.
LI F H.Investigation on photothermal conversion characteristics of graphene nanosheets-glycol nanofluids[J]. CIESC journal, 2020, 71(S1): 479-485.
[19] 宗美林, 叶晓江, 常怀钟, 等. 水基碳纳米管纳米流体在室外自然条件下的光热性能研究[J]. 太阳能学报, 2020, 41(5): 48-53.
ZONG M L, YE X J, CHANG H Z, et al.Study on photo-thermal conversion characteristics of water-based carbon nanotubes in outdoor natural condition[J]. Acta energiae solaris sinica, 2020, 41(5): 48-53.
[20] 屈健, 田敏, 王谦, 等. 碳纳米管-水纳米流体的光热转化特性[J]. 化工学报, 2016, 67(增刊2): 113-119.
QU J,TIAN M, WANG Q, et al.Photo-thermal properties of MWCNT-H2O nanofluid[J]. CIESC journal, 2016, 67(S2): 113-119.
[21] BOLDOO T, HAM J, CHO H.Comparison study on photo-thermal energy conversion performance of functionalized and non-functionalized MWCNT nanofluid[J]. Energies, 2019, 12(19): 3763.
[22] TONG Y J, BOLDOO T, HAM J, et al.Improvement of photo-thermal energy conversion performance of MWCNT/Fe3O4 hybrid nanofluid compared to Fe3O4 nanofluid[J]. Energy, 2020, 196: 117086.
[23] SHI L, HE Y R, HUANG Y M, et al.Recyclable Fe3O4@CNT nanoparticles for high-efficiency solar vapor generation[J]. Energy conversion and management, 2017, 149: 401-408.
[24] PHILIP J, SHIMA P D, RAJ B.Enhancement of thermal conductivity in magnetite based nanofluid due to chainlike structures[J]. Applied physics letters, 2007, 91(20): 203108.
[25] WRIGHT B, THOMAS D, HONG H P, et al.Magnetic field enhanced thermal conductivity in heat transfer nanofluids containing Ni coated single wall carbon nanotubes[J]. Applied physics letters, 2007, 91(17): 173116.
[26] FARBOD M, AHANGARPOUR A.Improved thermal conductivity of Ag decorated carbon nanotubes water based nanofluids[J]. Physics letters A, 2016, 380(48): 4044-4048.
[27] DOU W L, XIN X, XU G Y.Dispersion of carbon nanotubes by amphiphilic molecules[J]. Acta physico-chimica sinica, 2009, 25(2): 382-388.
[28] 贾朝富, 邢美波, 张洪发, 等. 高稳定水基MWCNT-Fe3O4磁性纳米流体的制备研究[J]. 功能材料, 2021, 52(11): 11023-11030.
JIA C F, XING M B, ZHANG H F, et al.Preparation study of water-based MWCNT-Fe3O4 magnetic nanofluids with high stability[J]. Journal of functional materials, 2021, 52(11): 11023-11030.
PDF(2255 KB)

Accesses

Citation

Detail

Sections
Recommended

/