PERFORMANCE ANALYSIS OF SOLAR NANO PHOTONIC DISTILLATION FILM

Yue Chen, Cao Youkun, Peng Youde

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (11) : 147-154.

PDF(2155 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2155 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (11) : 147-154. DOI: 10.19912/j.0254-0096.tynxb.2022-0590

PERFORMANCE ANALYSIS OF SOLAR NANO PHOTONIC DISTILLATION FILM

  • Yue Chen, Cao Youkun, Peng Youde
Author information +
History +

Abstract

In order to decrease the high energy consumption of the conventional membrane distillation (MD) technology, a novel Nanophotonics-enabled solar membrane distillation (NESMD) is proposed to substitute the MD, and its overall thermodynamic performance was studied through analyzing the key operational parameters influence on overall thermodynamic performance. The investigation results show that the volume heating to heat the feed liquid causes the temperature polarization and the correspondingly high energy consumption of MD component, and the NESMD component adopts the surface heating to heat the feed liquid, and there is no temperature polarization, so it demonstrates significant energy-saving advantages. Under the same feed temperature and feed speed, the temperature polarization coefficient and thermal efficiency of NESMD component are significantly improved compared with MD module. The thermal efficiency of NESMD component is most affected by of solvent latent heat, and the low feed speed and high feed temperature can be adopted to improve its thermal efficiency. When PVA coating is used as power input section, and the maximum thermal efficiency values are achieved at the optimal input section length for both NESMD and MD components. NESMD module has better expansibility and longer active length than these of the MD module. The above performance laws provide a scientific basis for further optimizing the structure.

Key words

solar energy / membrane distillation / temperature polarization / nano photonic / thermal efficiency / active length

Cite this article

Download Citations
Yue Chen, Cao Youkun, Peng Youde. PERFORMANCE ANALYSIS OF SOLAR NANO PHOTONIC DISTILLATION FILM[J]. Acta Energiae Solaris Sinica. 2023, 44(11): 147-154 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0590

References

[1] ROSSLING G, SACHSE A.Membrane distillation: US,US5110475 A[P]. 1992.
[2] LAWSON K W, LLOYD D R.Membrane distillation. I. Module design and performance evaluation using vacuum membrane distillation[J]. Journal of membrane science, 1996, 120(1): 111-121.
[3] DRIOLI E, ALI A, MACEDONIO F.Membrane distillation: recent developments and perspectives[J]. Desalination, 2015, 356: 56-84.
[4] ALI A, QUIST JENSEN C A, MACEDONIO F, et al. Optimization of module length for continuous direct contact membrane distillation process[J]. Chemical engineering and processing: process intensification, 2016, 110: 188-200.
[5] SUMMERS E K, LIENHARD V J H. A novel solar-driven air gap membrane distillation system[J]. Desalination and water treatment, 2013, 51(7/8/9): 1344-1351.
[6] POLITANO A, ARGURIO P, DI PROFIO G, et al.Photothermal membrane distillation for seawater desalination[J]. Advanced materials, 2017, 29(2): 1603504.
[7] DONGARE P D, ALABASTRI A, PEDERSEN S, et al.Nanophotonics-enabled solar membrane distillation for off-grid water purification[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(27): 6936-6941.
[8] 高尚鹏. 聚偏氟乙烯光热纳米纤维膜的制备及脱盐应用[D]. 天津: 天津工业大学, 2019.
GAO S P.Preparation and desalination application of PVDF photothermal nanofiber membrane[D]. Tianjin: Tianjin Polytechnic University, 2019.
[9] 李洪建, 杨晓宏, 田瑞, 等. 基于量纲分析的太阳能空气隙膜蒸馏实验研究[J]. 太阳能学报, 2016, 37(10): 2547-2553.
LI H J, YANG X H, TIAN R, et al.Experimental study of solar air gap membrane distillation based on dimensional analysis[J]. Acta energiae solaris sinica, 2016, 37(10): 2547-2553.
[10] 习成思, 张亮, 张高明, 等. 太阳能光热-光电真空膜蒸馏系统实验研究[J]. 太阳能学报, 2021, 42(12): 29-34.
XI C S, ZHANG L, ZHANG G M, et al.Experimental study on solar thermal and photovoltaic vacuum membrane distillation[J]. Acta energiae solaris sinica, 2021, 42(12): 29-34.
[11] ALKHUDHIRI A, DARWISH N, HILAL N.Membrane distillation: a comprehensive review[J]. Desalination, 2012, 287: 2-18.
[12] ZHANG J H, GRAY S, LI J D. Modelling heat and mass transfers in DCMD using compressible membranes[J]. Journal of membrane science, 2012, 387/388: 7-16.
[13] QTAISHAT M, MATSUURA T, KRUCZEK B, et al.Heat and mass transfer analysis in direct contact membrane distillation[J]. Desalination, 2008, 219(1/2/3): 272-292.
[14] PHATTARANAWIK J, JIRARATANANON R, FANE A G.Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation[J]. Journal of membrane science, 2003, 215(1/2): 75-85.
[15] ALI A, MACEDONIO F, DRIOLI E, et al.Experimental and theoretical evaluation of temperature polarization phenomenon in direct contact membrane distillation[J]. Chemical engineering research and design, 2013, 91(10): 1966-1977.
[16] GRYTA M, TOMASZEWSKA M.Heat transport in the membrane distillation process[J]. Journal of membrane science, 1998, 144(1/2): 211-222.
[17] HITSOV I, MAERE T, DE SITTER K, et al.Modelling approaches in membrane distillation: a critical review[J]. Separation and purification technology, 2015, 142: 48-64.
[18] GRYTA M, TOMASZEWSKA M, MORAWSKI A W.Membrane distillation with laminar flow[J]. Separation and purification technology, 1997, 11(2): 93-101.
[19] KAKADE V U, LOCK G D, WILSON M, et al.Accurate heat transfer measurements using thermochromic liquid crystal. Part 2: application to a rotating disc[J]. International journal of heat and fluid flow, 2009, 30(5): 950-959.
[20] KHAYET M, VELÁZQUEZ A, MENGUAL J I. Modelling mass transport through a porous partition: effect of pore size distribution[J]. Journal of non-equilibrium thermodynamics, 2004, 29(3): 279-299.
PDF(2155 KB)

Accesses

Citation

Detail

Sections
Recommended

/