PARAMETER MATCHING AND EQUIVALENT HYDROGEN CONSUMPTION FOR OPTIMIZATION ENERGY MANAGEMENT OF FUEL CELL HYBRID LOCOMOTIVE

Jiang Dafa, Huang Hai, Li Wang, Li Yumei

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (8) : 68-76.

PDF(1897 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1897 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (8) : 68-76. DOI: 10.19912/j.0254-0096.tynxb.2022-0603

PARAMETER MATCHING AND EQUIVALENT HYDROGEN CONSUMPTION FOR OPTIMIZATION ENERGY MANAGEMENT OF FUEL CELL HYBRID LOCOMOTIVE

  • Jiang Dafa1,2, Huang Hai2, Li Wang2, Li Yumei2
Author information +
History +

Abstract

To improve the comprehensive economy of the fuel cell hybrid locomotive, a parameter matching method of fuel cell hybrid power system based on configuration cost optimization and locomotive dynamic performance is proposed. This paper equates the lithium battery energy consumption to the hydrogen consumption of the fuel cell and proposes a real-time optimization strategy of equivalent consumption strategy to reduce the overall energy consumption level of the system. Otherwise, the feasibility study of the proposed method is carried out based on the actual parameters of a locomotive. The results show that the target locomotive equipped with 10 sets of 150 kW fuel cells and 549 series and 16 parallel lithium batteries can achieve the minimum total purchase cost of the system while ensuring safe and stable operation. Moreover, based on the proposed equivalent consumption minimum strategy, the equivalent hydrogen consumption of the system can be reduced by 8.44%, and the overall economy of the hybrid power system is significantly improved.

Key words

hybrid power system / fuel cells / parameter matching / energy management / equivalent hydrogen consumption

Cite this article

Download Citations
Jiang Dafa, Huang Hai, Li Wang, Li Yumei. PARAMETER MATCHING AND EQUIVALENT HYDROGEN CONSUMPTION FOR OPTIMIZATION ENERGY MANAGEMENT OF FUEL CELL HYBRID LOCOMOTIVE[J]. Acta Energiae Solaris Sinica. 2023, 44(8): 68-76 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0603

References

[1] 孟照鑫, 何青, 胡华为, 等. 我国氢能产业发展现状与思考[J]. 现代化工, 2022, 42(1): 1-6, 12.
MENG Z X, HE Q, HU H W, et al.Development situation and consideration of hydrogen energy industry in China[J]. Modern chemical industry, 2022, 42(1): 1-6, 12.
[2] FERNANDEZ A M, KANDIDAYENI M, BOULON L, et al.An adaptive state machine based energy management strategy for a multi-stack fuel cell hybrid electric vehicle[J]. IEEE transactions on vehicular technology, 2020, 69(1): 220-234.
[3] 郭朋彦, 聂鑫鑫, 张瑞珠, 等. 氨燃料电池的研究现状及发展趋势[J]. 电源技术, 2019, 43(7): 1233-1236.
GUO P Y, NIE X X, ZHANG R Z, et al.Research status and development trend of ammonia fuel cells[J]. Chinese journal of power sources, 2019, 43(7): 1233-1236.
[4] HE H W, QUAN S W, SUN F C, et al.Model predictive control with lifetime constraints based energy management strategy for proton exchange membrane fuel cell hybrid power systems[J]. IEEE transactions on industrial electronics, 2020, 67(10): 9012-9023.
[5] MARTINEZ C M, HU X S, CAO D P, et al.Energy management in plug-in hybrid electric vehicles: recent progress and a connected vehicles perspective[J]. IEEE transactions on vehicular technology, 2017, 66(6): 4534-4549.
[6] GUO J H, JIANG Y, LIU C, et al.Integrated multistep Markov-based velocity predictor of energy consumption prediction model for battery electric vehicles[J]. Transportmetrica B-transport dynamics, 2021, 9(1): 399-414.
[7] LI H, RAVEY A, N’DIAYE A, et al. Online adaptive equivalent consumption minimization strategy for fuel cell hybrid electric vehicle considering power sources degradation[J]. Energy conversion and management, 2019, 192(2): 133-149.
[8] HU X S, ZOU C F, TANG X L, et al.Cost-optimal energy management of hybrid electric vehicles using fuel cell/battery health-aware predictive control[J]. IEEE transactions on power electronics, 2020, 35(1): 382-392.
[9] MENG X, LI Q, HUANG T, et al.A distributed performance consensus control strategy of multistack PEMFC generation system for hydrogen EMU trains[J]. IEEE transactions on industrial electronics, 2021, 68(9): 8207-8218.
[10] JI C L, QIU L A, ZHENG Z Q, et al.Research on energy management strategy of vehicle fuel cell-battery hybrid energy system based on GT-SUIT/Simulink[J]. Journal of physics: conference series, 2021, 1885(4): 42067.
[11] AMERL A A, OUKKACHA I, CAMARA M B, et al.Real-time control strategy of fuel cell and battery system for electric hybrid boat application[J]. Sustainability, 2021, 13(16): 8693.
[12] ABKENAR A T, NAZARI A, JAYASINGHE S D G, et al. Fuel cell power management using genetic expression programming in all-electric ships[J]. IEEE transactions on energy conversion, 2017, 32(2): 779-787.
[13] 纪文煜. 混合动力汽车传动参数匹配与优化方法研究[J]. 机电工程技术, 2021, 50(4): 147-150.
JI W Y.Research on matching and optimizing methods of transmission parameters of hybrid electric vehicles[J]. Mechanical & electrical engineering technology, 2021, 50(4): 147-150.
[14] 祖炳洁, 高坤, 马驰. 新能源混合动力汽车动力传动系的参数匹配与仿真计算[J]. 机械, 2021, 48(2): 1-6.
ZU B J, GAO K, MA C.Parameter matching and optimization of power train of new energy hybrid electric vehicle[J]. Machinery, 2021, 48(2): 1-6.
[15] KIM M J, PENG H E.Combined control/plant optimization of fuel cell hybrid vehicles[C]//2006 American Control Conference, 2006.
[16] DUAN B M, WANG Q N, WANG J N, et al.Calibration efficiency improvement of rule-based energy management system for a plug-in hybrid electric vehicle[J]. International journal of automotive technology, 2017, 18(2): 335-344.
[17] YANG S, WANG W S, ZHANG F Q, et al.Driving-style-oriented adaptive equivalent consumption minimization strategies for HEVs[J]. IEEE transactions on vehicular technology, 2018, 67(10): 9249-9261.
[18] 陈维荣, 燕雨, 李奇. 基于状态机的燃料电池混合动力系统控制策略[J]. 西南交通大学学报, 2019, 54(4): 663-670, 660.
CHEN W R, YAN Y, LI Q.Control strategy based on state machine for fuel cell hybrid power system[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 1-8.
[19] SONG K, LI F Q, HU X, et al.Multi-mode energy management strategy for fuel cell electric vehicles based on driving pattern identification using learning vector quantization neural network algorithm[J]. Journal of power sources, 2018, 389(6): 230-239.
[20] LI Q, LIU P R, MENG X, et al.Model prediction control-based energy management combining self-trending prediction and subset-searching algorithm for hydrogen electric multiple unit train[J]. IEEE transactions on transportation electrification, 2022, 8(2): 2249-2260.
[21] ZHANG W B, XU L F, LI J Q, et al.Comparison of daily operation strategies for a fuel cell/battery tram[J]. International journal of hydrogen energy, 2017, 42(29): 18532-18539.
[22] MOTAPON S N, DESSAINT L A, AL-HADDAD K.A comparative study of energy management schemes for a fuel-cell hybrid emergency power system of more-electric aircraft[J]. IEEE transactions on industrial electronics, 2014, 61(3): 1320-1334.
[23] LI Q, SU B, PU Y C, et al.A state machine control based on equivalent consumption minimization for fuel cell/ supercapacitor hybrid tramway[J]. IEEE transactions on transportation electrification, 2019, 5(2): 552-564.
[24] 张国瑞, 李奇, 韩莹, 等.基于运行模式和动态混合度的燃料电池混合动力有轨电车等效氢耗最小化能量管理方法研究[J]. 中国电机工程学报, 2018, 38(23): 6905-6914, 7124.
ZHANG G R, LI Q, HAN Y, et, al. Study on equivalent consumption minimization strategy based on operation mode and DDOH for fuel cell hybrid tramway[J]. Proceedings of the CSEE, 2018, 38(23): 6905-6914, 7124.
[25] ZHAO Z, WANG T E, LI M, et al.Optimization of fuzzy control energy management strategy for fuel cell vehicle power system using a multi-islandgenetic algorithm[J]. Energy science & engineering, 2021, 9(4): 548-564.
PDF(1897 KB)

Accesses

Citation

Detail

Sections
Recommended

/