CAPACITY CONFIGURATION OF INTEGRATED ELECTRICITY CHARGING AND HYDROGEN REFUELING STATION CONTAINING PHOTOVOLTAIC AND HYDROGEN STORAGE

Liu Shangqi, Hu Jian, Zhang Xiaojie, Qi Xiaomei, Wang Lei, Ji Ruiqiang

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (8) : 171-179.

PDF(1768 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1768 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (8) : 171-179. DOI: 10.19912/j.0254-0096.tynxb.2022-0609

CAPACITY CONFIGURATION OF INTEGRATED ELECTRICITY CHARGING AND HYDROGEN REFUELING STATION CONTAINING PHOTOVOLTAIC AND HYDROGEN STORAGE

  • Liu Shangqi1, Hu Jian1, Zhang Xiaojie2, Qi Xiaomei1, Wang Lei3, Ji Ruiqiang1
Author information +
History +

Abstract

The architecture of an electricity charging and hydrogen refueling station, which contains photovoltaics and hydrogen storage, was proposed for new energy vehicles to adapt to the low-carbon and clean trend. Considering the uncertainty of PV output and load demand, the capacity allocation model of the electric-hydrogen integrated energy station is established by fuzzy chance constraint planning with the objective of minimizing annualized cost. A case study shows that: the energy station can make full use of PV output and meet the electric and hydrogen load charging demand through electric-hydrogen coupling. The higher the confidence level, the larger the required equipment capacity and the higher the annualized cost. With the improvement of hydrogen production efficiency and the reduction of hydrogen storage equipment price, the power purchase cost can be reduced and the economy of the energy station can be improved.

Key words

renewable energy / hydrogen storage / capacity configuration / integrated electricity charging and hydrogen refueling station / fuzzy chance constraint

Cite this article

Download Citations
Liu Shangqi, Hu Jian, Zhang Xiaojie, Qi Xiaomei, Wang Lei, Ji Ruiqiang. CAPACITY CONFIGURATION OF INTEGRATED ELECTRICITY CHARGING AND HYDROGEN REFUELING STATION CONTAINING PHOTOVOLTAIC AND HYDROGEN STORAGE[J]. Acta Energiae Solaris Sinica. 2023, 44(8): 171-179 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0609

References

[1] WANG Q, XUE M Q, LIN B L, et al.Well-to-wheel analysis of energy consumption, greenhouse gas and air pollutants emissions of hydrogen fuel cell vehicle in China[J]. Journal of cleaner production, 2020, 275: 123061.
[2] 国务院办公厅.新能源汽车产业发展规划(2021-2035年)[Z]. 2020-11-02.
General Office of the State Council. New energy vehicle industry development plan (2021-2035) [Z]. 2020-11-02.
[3] 陈征, 肖湘宁, 路欣怡, 等. 含光伏发电系统的电动汽车充电站多目标容量优化配置方法[J]. 电工技术学报, 2013, 28(6): 238-248.
CHEN Z, XIAO X N, LU X Y, et al.Multi-objective optimization for capacity configuration of PV-based electric vehicle charging stations[J]. Transactions of China Electrotechnical Society, 2013, 28(6): 238-248.
[4] 董厚琦, 王俐英, 曹雨微, 等. 考虑用户价格需求响应的光-储充电站容量配置与定价方法研究[J]. 太阳能学报, 2021, 42(6): 79-86.
DONG H Q, WANG L Y, CAO Y W, et al.Capacity configuration and pricing designing methods of PV-storage charging stations considering user demand response[J]. Acta energiae solaris sinica, 2021, 42(6): 79-86.
[5] LI J H, ZHANG Z S, SHEN B X, et al.The capacity allocation method of photovoltaic and energy storage hybrid system considering the whole life cycle[J]. Journal of cleaner production, 2020, 275: 122902.
[6] ARSAD A Z, HANNAN M A, AL-SHETWI A Q, et al. Hydrogen energy storage integrated hybrid renewable energy systems: a review analysis for future research directions[J]. International journal of hydrogen energy, 2022, 47(39): 17285-17312.
[7] 熊宇峰, 司杨, 郑天文, 等. 基于主从博弈的工业园区综合能源系统氢储能优化配置[J]. 电工技术学报, 2021, 36(3): 507-516.
XIONG Y F, SI Y, ZHENG T W, et al.Optimal configuration of hydrogen storage in industrial park integrated energy system based on Stackelberg game[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 507-516.
[8] 熊宇峰, 陈来军, 郑天文, 等. 考虑电热气耦合特性的低碳园区综合能源系统氢储能优化配置[J]. 电力自动化设备, 2021, 41(9): 31-38.
XIONG Y F, CHEN L J, ZHENG T W, et al.Optimal configuration of hydrogen energy storage in low-carbon park integrated energy system considering electricity-heat-gas coupling characteristics[J]. Electric power automation equipment, 2021, 41(9): 31-38.
[9] 王靖, 康丽霞, 刘永忠. 化工系统消纳可再生能源的电-氢协调储能系统优化设计[J]. 化工学报, 2020, 71(3): 1131-1142.
WANG J, KANG L X, LIU Y Z.Optimal design of electricity-hydrogen energy storage systems for renewable energy penetrating into chemical process systems[J]. CIESC journal, 2020, 71(3): 1131-1142.
[10] 周建力, 乌云娜, 董昊鑫, 等. 计及电动汽车随机充电的风-光-氢综合能源系统优化规划[J]. 电力系统自动化, 2021, 45(24): 30-40.
ZHOU J L, WU Y N, DONG H X, et al.Optimal planning of wind-photovoltaic-hydrogen integrated energy system considering random charging of electric vehicles[J]. Automation of electric power systems, 2021, 45(24): 30-40.
[11] 石锦凯, 鲍谚, 陈振, 等. 计及充电负荷不确定性的充电站储能鲁棒优化配置方法[J]. 电力系统自动化, 2021, 45(20): 49-58.
SHI J K, BAO Y, CHEN Z, et al.Robust optimization configuration method of energy storage for charging stations considering charging load uncertainty[J]. Automation of electric power systems, 2021, 45(20): 49-58.
[12] 张靠社, 冯培基, 张刚, 等. 考虑机会约束的多能源微电网双层优化配置[J]. 太阳能学报, 2021, 42(8): 41-48.
ZHANG K S, FENG P J, ZHANG G, et al.BI-level optimization configuration method for multi-energy microgrid considering chance constraints[J]. Acta energiae solaris sinica, 2021, 42(8): 41-48.
[13] 熊虎, 向铁元, 陈红坤, 等. 含大规模间歇式电源的模糊机会约束机组组合研究[J]. 中国电机工程学报, 2013, 33(13): 36-44.
XIONG H, XIANG T Y, CHEN H K, et al.Research of fuzzy chance constrained unit commitment containing large-scale intermittent power[J]. Proceedings of the CSEE, 2013, 33(13): 36-44.
[14] 栗然, 丁星, 孙帆, 等. 风险导向下基于成本效益分析的多投资商虚拟电厂容量配置模型[J]. 电力自动化设备, 2021, 41(1): 145-153.
LI R, DING X, SUN F, et al.Risk-oriented capacity configuration model for multi-investor virtual power plant based on cost-benefit analysis[J]. Electric power automation equipment, 2021, 41(1): 145-153.
PDF(1768 KB)

Accesses

Citation

Detail

Sections
Recommended

/