STUDY ON INFLUENCING FACTORS AND SUSTAINABILITY OF HEAT EXCHANGE OF MIDDLE-DEEP GEOTHERMAL ENERGY IN SEVERE COLD REGION

Wang Zihong, Guo Liangliang, Zhou Xueyu, Mei Zhenzhou

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (9) : 483-492.

PDF(2022 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2022 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (9) : 483-492. DOI: 10.19912/j.0254-0096.tynxb.2022-0656

STUDY ON INFLUENCING FACTORS AND SUSTAINABILITY OF HEAT EXCHANGE OF MIDDLE-DEEP GEOTHERMAL ENERGY IN SEVERE COLD REGION

  • Wang Zihong1, Guo Liangliang1, Zhou Xueyu1, Mei Zhenzhou2
Author information +
History +

Abstract

Using the dual continuum medium method, a comprehensive numerical model of buried pipe heat transfer is established. On this basis, we evaluate the applicability of this technology in the severe cold region of northern China. At the same time, the influencing factors and sustainability of its heat transfer are studied. The research results show that in the severe cold region of northern China, the heat transfer performance of the mid-deep buried tube heat exchange technology is excellent, and it has good applicability and sustainability. The increase of the circulating water flow, the buried pipe depth, the thermal conductivity of inner pipes or the thermal conductivity of backfill materials can improve the heat transfer power; of the buried pipe. However, the increase of circulating water inlet temperature, inner and outer pipe diameter ratio or inner pipe thermal conductivity will reduce the heat transfer effect.

Key words

geothermal energy / heat transfer performance / numerical simulation / cold region / sustainability

Cite this article

Download Citations
Wang Zihong, Guo Liangliang, Zhou Xueyu, Mei Zhenzhou. STUDY ON INFLUENCING FACTORS AND SUSTAINABILITY OF HEAT EXCHANGE OF MIDDLE-DEEP GEOTHERMAL ENERGY IN SEVERE COLD REGION[J]. Acta Energiae Solaris Sinica. 2023, 44(9): 483-492 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0656

References

[1] 黄璜, 刘然, 李茜, 等. 地热能多级利用技术综述[J]. 热力发电, 2021, 50(9): 1-10.
HUANG H, LIU R, LI Q, et al.Overview on multi-level utilization techniques of geothermal energy[J]. Thermal power generation, 2021, 50(9): 1-10.
[2] 邵珠坤. 深孔套管式地埋管换热器传热数值分析及其应用[D]. 济南: 山东建筑大学, 2018.
SHAO Z K.Numerical analysis and application of heat transfer in deep hole coaxial tube ground heat exchanger[D]. Ji’nan: Shandong Jianzhu University, 2018.
[3] MIELKE P, BAUER D, HOMUTH S, et al.Thermal effect of a borehole thermal energy store on the subsurface[J]. Geothermal energy, 2014, 2(1): 2-5.
[4] 方肇洪, 贾林瑞, 张方方, 等. 中深层地埋管群的传热分析[J]. 山东建筑大学学报, 2021, 36(2): 1-8.
FANG Z H, JIA L R, ZHANG F F, et al.Analysis on the heat transfer of deep borehole cluster[J]. Journal of Shandong Jianzhu University, 2021, 36(2): 1-8.
[5] INGERSOLL L R, PLASS H J.Theory of the ground pipe heat source for the heat pump[J]. ASHRAE transactions, 1948, 54(7): 339-348.
[6] DEERMAN J D, KAVANAUGH S P.Simulation of vertical U-tube ground-coupled heat pump systems using the cylindrical heat source solution[J]. ASHRAE transactions, 1990, 97(1): 287-295.
[7] BEIER R A, ACUNA J, MOGENSEN P, et al.Transient heat transfer in a coaxial borehole heat exchanger[J]. Geothermics, 2014, 51: 470-482.
[8] GUO L L, ZHANG J, LI Y R, et al.Experimental and numerical investigation of the influence of groundwater flow on the borehole heat exchanger performance: a case study from Tangshan, China[J]. Energy and buildings, 2021, 248: 111199.
[9] DENG J W, WEI Q P, HE S, et al.Simulation analysis on the heat performance of deep borehole heat exchangers in medium-depth geothermal heat pump systems[J]. Energies, 2020, 13(3): 754.
[10] ZHANG Y Q, YU C, LI G S, et al.Performance analysis of a downhole coaxial heat exchanger geothermal system with various working fluids[J]. Applied thermal engineering, 2019, 163: 114317.
[11] 鲍玲玲, 徐豹, 王子勇, 等. 中深层同轴套管式地埋管换热器传热性能分析[J]. 地球物理学进展, 2020, 35(4): 1217-1222.
BAO L L, XU B, WANG Z Y, et al.Heat transfer performance analysis of the middle-deep coaxial casing ground heat exchanger[J]. Progress in geophysics, 2020, 35(4): 1217-1222.
[12] 孔彦龙, 陈超凡, 邵亥冰, 等. 深井换热技术原理及其换热功率评估[J]. 地球物理学报, 2017, 60(12): 4741-4752.
KONG Y L, CHEN C F, SHAO H B, et al.Principle and capacity quantification of deep-borehole heat exchangers[J]. Chinese journal of geophysics, 2017, 60(12): 4741-4752.
[13] HUANG Y B, ZHANG Y J, XIE Y Y, et al.Thermal performance analysis on the composition attributes of deep coaxial borehole heat exchanger for building heating[J]. Energy and buildings, 2020, 221: 110019.
[14] CHEN C F, SHAO H B, NAUMOV D, et al.Numerical investigation on the performance, sustainability, and efficiency of the deep borehole heat exchanger system for building heating[J]. Geothermal energy, 2019, 7(1): 1-26.
[15] HOLMBERG H, ACUNA J, NASS E, et al.Thermal evaluation of coaxial deep borehole heat exchangers[J]. Renewable energy, 2016, 97: 65-76.
[16] DIERSCH H J G, BAUER D, HEIDEMANN W, et al. Finite element modeling of borehole heat exchanger systems: part 1. fundamentals[J]. Computers & geosciences, 2011, 37(8): 1122-1135.
[17] 刘俊, 蔡皖龙, 王沣浩, 等. 深层地源热泵系统实验研究及管井结构优化[J]. 工程热物理学报, 2019, 40(9): 2143-2150.
LIU J, CAI W L, WANG F H, et al.Experimental study and tube structure optimization of deep borehole ground source heat pump[J]. Journal of engineering thermophysics, 2019, 40(9): 2143-2150.
[18] 蔡皖龙, 刘俊, 王沣浩, 等. 深层地埋管换热器换热性能模拟及稳定性研究[J]. 太阳能学报, 2020, 41(2): 158-164.
CAI W L, LIU J, WANG F H, et al.Research on heat transfer performance and stability of deep borehole heat exchanger[J]. Acta energiae solaris sinica, 2020, 41(2): 158-164.
[19] 李骥, 徐伟, 李建峰, 等. 中深层地埋管供热技术综述及工程实测分析[J]. 暖通空调, 2020, 50(8): 35-39.
LI J, XU W, LI J F, et al.Heat supply technology review and engineering measurement analysis of medium and deep buried pipes[J]. Heating ventilating & air conditioning, 2020, 50(8): 35-39.
PDF(2022 KB)

Accesses

Citation

Detail

Sections
Recommended

/