FLOW FIELD ANALYSIS OF TIDAL ENERGY HORIZONTAL AXIS TURBINES

Liu Weixing, Liu Lei, Cui Lin, Li Ningyu, Zhang Zhiyang

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (9) : 468-475.

PDF(2091 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2091 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (9) : 468-475. DOI: 10.19912/j.0254-0096.tynxb.2022-0677

FLOW FIELD ANALYSIS OF TIDAL ENERGY HORIZONTAL AXIS TURBINES

  • Liu Weixing1, Liu Lei1, Cui Lin2, Li Ningyu3, Zhang Zhiyang1
Author information +
History +

Abstract

The actuator disc (AD) model combined with the CFD method has the advantage of being computationally less expensive and more efficient than the CFD advective mesh technique. The OpenFOAM open source software is used and the thrust T is uniformly loaded into the AD as an additional source term for the body force. The flow field is analyzed for three cases: free zone, single turbine and array turbine at top speed ratio (TSR) 5.5. The results show that at the upstream of the incoming flow, the three flow velocity profiles coincide and the flow velocity increases in the same trend. When the water is at the front of the AD, the AD acts as a drag on it, resulting in a significant drop in flow velocity. At the wake, in the upstream of the array turbine, kinetic energy is exchanged between the turbine wake and the downstream turbine flow field on both sides of the parallel, causing the wake to recover at a greater rate than the single turbine wake. However, at the horizontal cross-sectional velocity at the centre of the rotor, the wake recovery is severely under-recovered in both the single turbine and the array turbine. The reason for this is that due to the interference of the wake, the incoming flow velocity from the downstream turbine is continuously reduced and the amount of energy that can be absorbed and transformed decreases, and the wake cannot be recovered.

Key words

tidal energy / actuator disc / numerical simulation / horizontal axis turbines / tip speed ratio / wake field

Cite this article

Download Citations
Liu Weixing, Liu Lei, Cui Lin, Li Ningyu, Zhang Zhiyang. FLOW FIELD ANALYSIS OF TIDAL ENERGY HORIZONTAL AXIS TURBINES[J]. Acta Energiae Solaris Sinica. 2023, 44(9): 468-475 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0677

References

[1] LIU W X, LIU L, WU H T, et al.Performance analysis and offshore applications of the diffuser augmented tidal turbines[J]. Ships and offshore structures, 2023, 18(1): 68-77.
[2] ZHANG Z Y, WU H T, LIU W X.Effects of mooring line hydrodynamic coefficients and wave parameters on the floating production storage and offloading motions[J]. Desalination and water treatment, 2021, 239: 278-288.
[3] 朱善强, 李广年, 李振琦, 等. 水平轴潮流能水轮机尾流特性研究[J]. 可再生能源, 2022, 40(2): 278-284.
ZHU S Q, LI G N, LI Z Q, et al.Study on the wake characteristics of horizontal axis tidal current turbine[J]. Renewable energy resources, 2022, 40(2): 278-284.
[4] 马国林. 基于改进致动盘模型的风力机尾流特性研究[D]. 兰州: 兰州理工大学, 2021.
MA G L.Study of wake characteristics of wind turbine based on improved actuator disk model[D]. Lanzhou: Lanzhou University of Technology, 2021.
[5] 任会来. 基于致动盘方法的多台风力机尾流数值模拟研究[D]. 北京: 华北电力大学, 2019.
REN H L.Numerical simulation of multiple wind turbines wake based on actuator disc method[D]. Beijing: North China Electric Power University, 2019.
[6] KHANJARI A, MAHMOODI E, AHMADI M H.Energy and exergy analyzing of a wind turbine in free stream and wind tunnel in CFD domain based on actuator disc technique[J]. Renewable energy, 2020, 160: 231-249.
[7] REZAEIHA A, MICALLEF D.Wake interactions of two tandem floating offshore wind turbines: CFD analysis using actuator disc model[J]. Renewable energy, 2021, 179: 859-876.
[8] NEUNABER I, HÖLLING M, WHALE J, et al. Comparison of the turbulence in the wakes of an actuator disc and a model wind turbine by higher order statistics: a wind tunnel study[J]. Renewable energy, 2021, 179: 1650-1662.
[9] YU W, TAVERNIER D, FERREIRA C, et al.New dynamic-inflow engineering models based on linear and nonlinear actuator disc vortex models[J]. Wind energy, 2019, 22(11): 1433-1450.
[10] EDMUNDS M, WILLIAMS A J, MASTERS I, et al.A spatially nonlinear generalised actuator disk model for the simulation of horizontal axis wind and tidal turbines[J]. Energy, 2020, 194: 116803.
[11] MICHAEL S, CURRAN C.Mesh and load distribution requirements for actuator line CFD simulations[J]. Wind energy, 2013, 16(8): 1183-1196.
[12] 褚景春, 袁凌, 李方敏, 等. 基于致动盘模型的单台风电机组尾流流场模拟[J]. 分布式能源, 2018, 3(3): 10-14.
CHU J C, YUAN L, LI F M, et al.Numerical simulation of wind turbine wake field based on actuator disc model[J]. Distributed energy, 2018, 3(3): 10-14.
[13] 张玉全, 郑源, 孙勇, 等. 基于致动盘的潮流能水轮机尾流场研究[J]. 可再生能源, 2019, 37(1): 144-150.
ZHANG Y Q, ZHENG Y, SUN Y,et al.Research on the wake characteristics of tidal stream turbine based on actuator disk method[J]. Renewable energy resources, 2019, 37(1): 144-150.
[14] 杨祥生. 风力机尾流效应数值模拟研究[D]. 南京: 南京航空航天大学, 2016.
YANG X S.Study on the numerical simulation of wind turbine wakes effect[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016.
[15] CRASTO G, GRAVDAHL A R, Castellani F, et al.Wake modeling with the actuator disc concept[J]. Energy procedia, 2012, 24: 385-392.
[16] 刘葳兴, 刘磊, 陈雨龙, 等. 基于致动盘方法分析潮汐能水轮机水动力性能[J]. 广东海洋大学学报, 2022,42(4): 138-145.
LIU W X, LIU L, CHEN Y L, et al.Analysis of hydrodynamic performance of tidal turbines using actuator disc method[J]. Journal of Guangdong Ocean University, 2022, 42(4): 138-145.
[17] 任会来, 王聪, 黎波, 等. 基于致动盘模型的风力机来流风速选取方法研究[J]. 可再生能源, 2021, 39(7): 929-934.
REN H L, WANG C, LI B, et al. Research on selection method of inflow wind speed of wind turbine based on actuator disk model[J]. Renewable energy, 2021 resources, 39(7): 929-934.
[18] PAYNE G, STALLARD T, MARTINEZ R.Design and manufacture of a bed supported tidal turbine model for blade and shaft load measurement in turbulent flow and waves[J]. Renewable energy, 2017, 107: 312-326.
[19] SELLAR B, WAKELAM G, SUTHERLAND DUNCAN R J S, et al. Characterisation of tidal flows at the European marine energy centre in the absence of ocean waves[J]. Energies, 2018, 11(1): 176.
[20] MALKI R, MASTERS I, WILLIAMS A J, et al.Planning tidal stream turbine array layouts using a coupled blade element momentum-computational fluid dynamics model[J]. Renewable energy, 2014, 63: 46-54.
PDF(2091 KB)

Accesses

Citation

Detail

Sections
Recommended

/