RESEARCH ON SOLAR RADIATION CHARACTERISTICS OF VERTICAL GREENING CANOPY IN SUBTROPICAL REGIONS

Zhao Cheng, Zhang Lei, Yang Yuanqin, Zhang Yu, Liu Mingxin, Zhao Lihua

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (9) : 280-285.

PDF(1780 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1780 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (9) : 280-285. DOI: 10.19912/j.0254-0096.tynxb.2022-0689

RESEARCH ON SOLAR RADIATION CHARACTERISTICS OF VERTICAL GREENING CANOPY IN SUBTROPICAL REGIONS

  • Zhao Cheng1, Zhang Lei1, Yang Yuanqin1, Zhang Yu2, Liu Mingxin1, Zhao Lihua1
Author information +
History +

Abstract

A platform for observing the solar radiation characteristics of vertical greening canopies was established with plants commonly used in subtropical regions. The model of canopy solar radiation transmittance based on the Lambert-Beer law was modified. The performance of the modified model was examined using error analysis indicators. Through a sensitivity analysis of the input parameters, it was found that the leaf area index (LAI) is a critical parameter affecting the canopy solar radiation transmittance. Therefore, the annual variations of the LAIs of the plants were observed. Then, the solar radiation transmittances of canopies with different orientations were determined using the modified model. The results indicated that the vertical greening canopies intercept over 80% of incident solar radiation.

Key words

passive solar buildings / solar radiation / sensitivity analysis / optical properties / vertical greening / canopy transmittance

Cite this article

Download Citations
Zhao Cheng, Zhang Lei, Yang Yuanqin, Zhang Yu, Liu Mingxin, Zhao Lihua. RESEARCH ON SOLAR RADIATION CHARACTERISTICS OF VERTICAL GREENING CANOPY IN SUBTROPICAL REGIONS[J]. Acta Energiae Solaris Sinica. 2023, 44(9): 280-285 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0689

References

[1] 王君, 余本东, 王矗垚, 等. 太阳能光伏光热建筑一体化(BIPV/T)研究新进展[J]. 太阳能学报, 2022, 43(6): 72-78.
WANG J, YU B D, WANG Z Y, et al.New advancements of building integrated photovoltaic/thermal system(BIPV/T)[J]. Acta energiae solaris sinica, 2022, 43(6): 72-78.
[2] 杨婧, 刘艳峰, 陈耀文, 等. 用于被动太阳能采暖适用技术选择的气候分区研究[J]. 太阳能学报, 2021, 42(6): 234-242.
YANG J, LIU Y F, CHEN Y W, et al.Research of climate regions division for applicable passive solar heating technology selection[J]. Acta energiae solaris sinica, 2021, 42(6): 234-242.
[3] 李元哲. 拉萨市住宅利用太阳能采暖的可行性[J]. 太阳能, 2004(4): 36-38.
LI Y Z.Feasibility of solar heating for residential building in Lhasa[J]. Solar energy, 2004(4): 36-38.
[4] 宋金昭, 杨建平, 杭伟. 被动式太阳能建筑节能经济优化研究[J]. 太阳能学报, 2012, 33(8): 1425-1429.
SONG J Z, YANG J P, HANG W.Reasearch on the economy optimizing of passive solar building[J]. Acta energiae solaris sinica, 2012, 33(8): 1425-1429.
[5] MEDL A, STANGL R, FLORINETH F.Vertical greening systems-a review on recent technologies and research advancement[J]. Building and environment, 2017, 125: 227-239.
[6] PENG L L H, JIANG Z D, YANG X S, et al. Cooling effects of block-scale facade greening and their relationship with urban form[J]. Building and environment, 2020, 169: 106552.
[7] LEE L S H, JIM C Y. Thermal-irradiance behaviours of subtropical intensive green roof in winter and landscape-soil design implications[J]. Energy and buildings, 2020, 209: 109692.
[8] CHEN Q Y, DING Q, LIU X H.Establishment and validation of a solar radiation model for a living wall system[J]. Energy and buildings, 2019, 195: 105-115.
[9] ZHAO W G, QUALLS R J.A multiple-layer canopy scattering model to simulate shortwave radiation distribution within a homogeneous plant canopy[J]. Water resources research, 2005, 41(8): 1-16.
[10] IP K, LAM M, MILLER A.Shading performance of a vertical deciduous climbing plant canopy[J]. Building and environment, 2010, 45(1): 81-88.
[11] CONVERTINO F, VOX G, SCHETTINI E.Thermal barrier effect of green façades: long-wave infrared radiative energy transfer modelling[J]. Building and environment, 2020, 177: 106875.
[12] WIDIASTUTI R, ZAINI J, CAESARENDRA W, et al.Thermal insulation effect of green façades based on calculation of heat transfer and long wave infrared radiative exchange[J]. Measurement, 2022, 188: 110555.
[13] RAJI B, TENPIERIK M J, VAN DEN DOBBELSTEEN A. The impact of greening systems on building energy performance: a literature review[J]. Renewable and sustainable energy reviews, 2015, 45: 610-623.
[14] PAPADOPOULOS A P, PARARAJASINGHAM S.The influence of plant spacing on light interception and use in greenhouse tomato (Lycopersicon esculentum Mill.): a review[J]. Scientia horticulturae, 1997, 69(1/2): 1-29.
[15] DEL BARRIO E P. Analysis of the green roofs cooling potential in buildings[J]. Energy and buildings, 1998, 27(2): 179-193.
[16] LI X C, NIU K.Effectively predict the solar radiation transmittance of dusty photovoltaic panels through Lambert-Beer law[J]. Renewable energy, 2018, 123: 634-638.
[17] CAMPBELL G S.Derivation of an angle density function for canopies with ellipsoidal leaf angle distributions[J]. Agricultural and forest meteorology, 1990, 49(3): 173-176.
[18] ROGERS C, CHEN J M, CROFT H, et al. Daily leaf area index from photosynthetically active radiation for long term records of canopy structure and leaf phenology[J]. Agricultural and forest meteorology, 2021, 304/305: 108407.
[19] KONTOLEON K J, EUMORFOPOULOU E A.The effect of the orientation and proportion of a plant-covered wall layer on the thermal performance of a building zone[J]. Building and environment, 2010, 45(5): 1287-1303.
[20] CONVERTINO F, VOX G, SCHETTINI E.Evaluation of the cooling effect provided by a green façade as nature-based system for buildings[J]. Building and environment, 2021, 203: 108099.
PDF(1780 KB)

Accesses

Citation

Detail

Sections
Recommended

/