SIMULATION AND OPTIMIZATION OF THIN-FILM SOLAR CELLS WITH GeSe AS ABSORPTION LAYER

Han Yingjian, Wu Haifeng, Wang Dandan, Xing Meibo, Li Zirui, Wang Ruixiang

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (9) : 66-71.

PDF(2065 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2065 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (9) : 66-71. DOI: 10.19912/j.0254-0096.tynxb.2022-0690

SIMULATION AND OPTIMIZATION OF THIN-FILM SOLAR CELLS WITH GeSe AS ABSORPTION LAYER

  • Han Yingjian1, Wu Haifeng1, Wang Dandan2, Xing Meibo1, Li Zirui1, Wang Ruixiang1
Author information +
History +

Abstract

In this paper, for thin-film solar cells with GeSe thin film as the absorber layer, the effects of the absorber layer parameters on the photovoltaic performance were studied by using Scaps-1D solar cell simulation software. Thickness, defect state density, doping density and electron affinity parameters are used to obtain open-circuit voltage of 0.77 V, short-circuit current of 38.55 mA/cm2, fill factor of 85.21% and photoelectric conversion efficiency of 25.3%.

Key words

thin film solar cells / solar cell efficiency / direct numerical simulation / GeSe absorber layer / parameter optimization

Cite this article

Download Citations
Han Yingjian, Wu Haifeng, Wang Dandan, Xing Meibo, Li Zirui, Wang Ruixiang. SIMULATION AND OPTIMIZATION OF THIN-FILM SOLAR CELLS WITH GeSe AS ABSORPTION LAYER[J]. Acta Energiae Solaris Sinica. 2023, 44(9): 66-71 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0690

References

[1] XUE D J, LIU S C, DAI C M, et al.GeSe thin-film solar cells fabricated by self-regulated rapid thermal sublimation[J]. Journal of the American Chemical Society, 2017, 139(2): 958-965.
[2] LIU S C, MI Y, XUE D J, et al.Investigation of physical and electronic properties of GeSe for photovoltaic applications[J]. Advanced electronic materials, 2017, 3(11): 1700141.
[3] CHEN B W, RUAN Y R, LI J M, et al.Highly oriented GeSe thin film: self-assembly growth via the sandwiching post-annealing treatment and its solar cell performance[J]. Nanoscale, 2019, 11(9): 3968-3978.
[4] LIU S C, DAI C M, MIN Y M, et al.An antibonding valence band maximum enables defect-tolerant and stable GeSe photovoltaics[J]. Nature communications, 2021, 12: 670.
[5] 王龙祥, 邢美波, 王瑞祥. 基于量子点太阳电池的高效光学利用策略[J]. 太阳能学报, 2023, 44(2): 436-444.
WANG L X, XING M B, WANG R X.Efficient light utilization strategies based on quantum dot solar cells[J]. Acta energiae solaris sinica, 2023, 44(2): 436-444.
[6] 程雪梅, 孟凡英, 汪建强, 等. p型晶体硅异质结太阳电池光电特性模拟研究[J]. 太阳能学报, 2012, 33(9): 1474-1479.
CHENG X M, MENG F Y, WANG J Q, et al.Simulation of heterojunction solar cells based on p-type silicon wafer[J]. Acta energiae solaris sinica, 2012, 33(9): 1474-1479.
[7] AL-HATTAB M, MOUDOU L, KHENFOUCH M, et al.Numerical simulation of a new heterostructure CIGS/GaSe solar cell system using SCAPS-1D software[J]. Solar energy, 2021, 227: 13-22.
[8] IHALANE E H, ATOURKI L, KIROU H, et al.Numerical study of thin films CIGS bilayer solar cells using SCAPS[J]. Materials today: proceedings, 2016, 3(7): 2570-2577.
[9] OUSLIMANE T, ET-TAYA L, ELMAIMOUNI L, et al.Impact of absorber layer thickness, defect density, and operating temperature on the performance of MAPbI3 solar cells based on ZnO electron transporting material[J]. Heliyon, 2021, 7(3): e06379.
[10] ALZOUBI T, MOUSTAFA M.Numerical optimization of absorber and CdS buffer layers in CIGS solar cells using SCAPS[J]. International journal of smart grid and clean energy, 2019, 8: 291-298.
[11] KANOUN A A, KANOUN M B, MERAD A E, et al.Toward development of high-performance perovskite solar cells based on CH3NH3GeI3 using computational approach[J]. Solar energy, 2019, 182: 237-244.
[12] 邢美波, 丁宪喆, 景栋梁, 等. 一步法制备高效TiO2/PbS异质结量子点太阳电池[J]. 太阳能学报, 2022, 43(12): 19-24.
XING M B, DING X Z, JING D L, et al.Preparation of high efficiency TiO2/PbS quantum dot heterojunction solar cells by single-step method[J]. Acta energiae solaris sinica, 2022, 43(12): 19-24.
[13] CHELVANATHAN P, HOSSAIN M I, AMIN N.Performance analysis of copper-indium-gallium-diselenide (CIGS) solar cells with various buffer layers by SCAPS[J]. Current applied physics, 2010, 10(3): S387-S391.
[14] MUKHOPADHYAY K, FERMI H I P, JOSEPH P J. Thickness optimization of CdS/ZnO hybrid buffer layer in CZTSe thin film solar cells using SCAPS simulation program[J]. Materials research innovations, 2019, 23(6): 319-329.
[15] MOSTEFAOUI M, MAZARI H, KHELIFI S, et al.Simulation of high efficiency CIGS solar cells with SCAPS-1D software[J]. Energy procedia, 2015, 74: 736-744.
[16] HOSSAIN A, HASAN M M, RAHMAN M S, et al.Fully lead-free all perovskite tandem solar cell with improved efficiency: device simulation using SCAPS-1D[C]//2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 2020: 1221-1224.
[17] ABDELAZIZ S, ZEKRY A, SHAKER A, et al.Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation[J]. Optical materials, 2020, 101: 109738.
[18] DU H J, WANG W C, ZHU J Z.Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency[J]. Chinese physics B, 2016, 25(10): 108802.
[19] CHAKRABORTY D, SOMAY S, PANDEY S K.Numerical analysis of a novel HTL-free perovskite solar cell with gradient doping and a WS2 interlayer[J]. Micro and nanostructures, 2022, 163: 107149.
[20] KEMP K W, LABELLE A J, THON S M, et al.Interface recombination in depleted heterojunction photovoltaics based on colloidal quantum dots[J]. Advanced energy materials, 2013, 3(7): 917-922.
[21] HAQUE M D, ALI M H, RAHMAN M F, et al.Numerical analysis for the efficiency enhancement of MoS2 solar cell: a simulation approach by SCAPS-1D[J]. Optical materials, 2022, 131: 112678.
PDF(2065 KB)

Accesses

Citation

Detail

Sections
Recommended

/