DTW-MANN-FM MODEL COMBINED WITH USER PROFILE FOR DISTRIBUTED PHOTOVOLTAIC POWER SHORT-TERM FORECASTING

Zhou Jiayi, Zhao Shuangshuang, Wang Zhongdong, Gao Fan, Wang He, Xu Xiaolin

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (9) : 187-193.

PDF(1889 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1889 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (9) : 187-193. DOI: 10.19912/j.0254-0096.tynxb.2022-0709

DTW-MANN-FM MODEL COMBINED WITH USER PROFILE FOR DISTRIBUTED PHOTOVOLTAIC POWER SHORT-TERM FORECASTING

  • Zhou Jiayi, Zhao Shuangshuang, Wang Zhongdong, Gao Fan, Wang He, Xu Xiaolin
Author information +
History +

Abstract

In order to solve the problem of generator characteristic difference and meteorological data deviation caused by geographical location offset in distributed photovoltaic power short-term forecasting, further improving the prediction performance, a dynamic time warping (DTW)-multi-head attention neural network (MANN)-factorization machine (FM) prediction model combined with user profile is proposed. Firstly, we analyze the profile data and historical power generation data of generators to count the user profile. Then we use the optimization algorithm based on DTW standard, to correct offset of meteorological characteristics, forming a reasonable and perfect “user+meteorological” feature combination. Finally we utilize the weighted data samples to train the model. In the simulation stage, the real photovoltaic data of Jiangsu Province are used to compare the proposed model with several advanced photovoltaic prediction models in the industry. The results show that the proposed model has higher accuracy and robustness, indicating better predictive performance.

Key words

distributed power generation / neural networks / user profile / photovoltaic power prediction / multi-head self-attention mechanism

Cite this article

Download Citations
Zhou Jiayi, Zhao Shuangshuang, Wang Zhongdong, Gao Fan, Wang He, Xu Xiaolin. DTW-MANN-FM MODEL COMBINED WITH USER PROFILE FOR DISTRIBUTED PHOTOVOLTAIC POWER SHORT-TERM FORECASTING[J]. Acta Energiae Solaris Sinica. 2023, 44(9): 187-193 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0709

References

[1] 蒋莹. 整县光伏激活乡村振兴绿色动能[J]. 中国发展观察, 2021(14): 19-22.
JIANG Y."Whole county photovoltaic" activates the green kinetic energy of rural revitalization[J]. China development observation, 2021(14): 19-22.
[2] 崔红芬, 汪春, 叶季蕾, 等. 多接入点分布式光伏发电系统与配电网交互影响研究[J]. 电力系统保护与控制, 2015, 43(10): 91-97.
CUI H F, WANG C, YE J L, et al.Research of interaction of distributed PV system with multiple access points and distribution network[J]. Power system protection and control, 2015, 43(10): 91-97.
[3] UTPAL K D, KOK S T, MEHDI S, et al.Forecasting of photovoltaic power generation and model optimization: a review[J]. Renewable and sustainable energy reviews, 2018, 81(1): 912-928.
[4] 余光正, 陆柳, 汤波, 等. 基于云图特征提取的改进混合神经网络超短期光伏功率预测方法[J]. 中国电机工程学报, 2021, 41(20): 6989-7003.
YU G Z, LU L, TANG B, et al.An improved hybrid neural network ultra-short-term photovoltaic power forecasting method based on cloud image feature extraction[J]. Proceedings of the CSEE, 2021, 41(20): 6989-7003.
[5] 王育飞, 付玉超, 薛花. 基于Chaos-EEMD-PFBD分解和GA-BP神经网络的光伏发电功率超短期预测法[J]. 太阳能学报, 2020, 41(12): 55-62.
WANG Y F, FU Y C, XUE H.Ultra-short-term forecasting method of photovoltaic power generation based on Chaos-EEMD-PFBD decomposition and GA-BP neural networks[J]. Acta energiae solaris sinica, 2020, 41(12): 55-62.
[6] WANG K J, QI X X, LIU H D.A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network[J]. Applied energy, 2019, 251: 113315.
[7] 张飞, 张志伟, 万乐斐, 等. 基于EEMD-GRNN方法的光伏电站短期出力预测[J]. 太阳能学报, 2020, 41(12): 103-109.
ZHANG F, ZHANG Z W, WAN L F, et al.Short-term output prediction of photovoltaic power station based on EEMD-GRNN method[J]. Acta energiae solaris sinica, 2020, 41(12): 103-109.
[8] 刘国海, 孙文卿, 吴振飞, 等. 基于Attention-GRU的短期光伏发电功率预测[J]. 太阳能学报, 2022, 43(2): 226-232.
LIU G H, SUN W Q, WU Z F, et al.Short-term photovoltaic power forecasting based on Attention-GRU model[J]. Acta energiae solaris sinica, 2022, 43(2): 226-232.
[9] 张雲钦, 程起泽, 蒋文杰, 等. 基于EMD-PCA-LSTM的光伏功率预测模型[J]. 太阳能学报, 2021, 42(9): 62-69.
ZHANG Y Q, CHENG Q Z, JIANG W J, et al.Photovoltaic power prediction model based on EMD-PCA-LSTMl[J]. Acta energiae solaris sinica, 2021, 42(9): 62-69.
[10] 单英浩, 付青, 耿炫, 等. 基于改进BP-SVM-ELM与粒子化SOM-LSF的微电网光伏发电组合预测方法[J]. 中国电机工程学报, 2016, 36(12): 3334-3343.
SHAN Y H, FU Q, GENG X, et al.Combined forecasting of photovoltaic power generation in microgrid based on the improved BP-SVM-ELM and SOM-LSF with particlization[J]. Proceedings of the CSEE, 2016, 36(12): 3334-3343.
[11] FENG C, CUI M J, HODGE B M, et al.Unsupervised clustering-based short-term solar forecasting[J]. IEEE transactions on sustainable energy, 2019, 10(4): 2174-2185.
[12] 倪超, 王聪, 朱婷婷, 等. 基于CNN-Bi-LSTM的太阳辐照度超短期预测[J]. 太阳能学报, 2022, 43(3): 197-202.
NI C, WANG C, ZHU T T, et al.Super-short-term forecast of solar irradiance based on CNN-Bi-LSTM[J]. Acta energiae solaris sinica, 2022, 43(3): 197-202.
[13] 葛乐, 陆文伟, 袁晓冬, 等. 基于改进相似日和ABC-SVM的光伏电站功率预测[J]. 太阳能学报, 2018, 39(3): 775-782.
GE L, LU W W, YUAN X D, et al.Power forecasting of photovoltaic plant based on improved similar day and ABC-SVM[J]. Acta energiae solaris sinica, 2018, 39(3): 775-782.
[14] CUI Y, ZHANG J R, ZHONG W Z.Short-term photovoltaic output prediction method based on similar day selection with grey relational theory[C]//2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia). Chengdu, China, 2019: 792-797.
[15] 唐雅洁, 林达, 倪筹帷, 等. 基于XGBoost的双层协同实时校正超短期光伏预测[J]. 电力系统自动化, 2021, 45(7): 18-27.
TANG Y J, LIN D, NI C W, et al.XGBoost based Bi-layer collaborative real-time calibration for ultra-short-term photovoltaic prediction[J]. Automation of electric power systems, 2021, 45(7): 18-27.
[16] BARBIERI F, RAJAKARUNA S, GHOSH A.Very short-term photovoltaic power forecasting with cloud modeling: a review[J]. Renewable and sustainable energy reviews, 2017, 75: 242-263.
[17] 刘东冉, 陈树勇, 马敏, 等. 光伏发电系统模型综述[J]. 电网技术, 2011, 35(8): 47-52.
LIU D R, CHEN S Y, MA M, et al.A review on models for photovoltaic generation system[J]. Power system technology, 2011, 35(8): 47-52.
[18] 黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7): 1619-1647.
HUANG L W, JIANG B T, LYU S Y, et al.Survey on deep learning based recommender systems[J]. Chinese journal of computers, 2018, 41(7): 1619-1647.
[19] SALMINEN J, GUAN K, JUNG S G, et al.A literature review of quantitative persona creation[C]//Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. Honolulu, HI, USA, 2020: 1-14.
[20] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, California, USA, 2017: 6000-6010.
[21] GUO H F, TANG R M, YE Y M, et al.DeepFM: a factorization-machine based neural network for CTR prediction[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 2017.
[22] CHENG H T, KOC L, HARMSEN J, et al.Wide & deep learning for recommender systems[C]//1st Workshop on Deep Learning for Recommender Systems. Boston, USA, 2016.
PDF(1889 KB)

Accesses

Citation

Detail

Sections
Recommended

/