LOW-CARBON ECONOMIC DISPATCH OF INTEGRATED ENERGY SYSTEM IN CAMPUS BASED ON STACKELBERG GAME AND HYBRID CARBON POLICY

Zhang Hong, Zhang Ruifang, Zhou Jiancheng, Sun Fangliang, Jiang Delong

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (9) : 9-17.

PDF(1966 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1966 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (9) : 9-17. DOI: 10.19912/j.0254-0096.tynxb.2022-0715

LOW-CARBON ECONOMIC DISPATCH OF INTEGRATED ENERGY SYSTEM IN CAMPUS BASED ON STACKELBERG GAME AND HYBRID CARBON POLICY

  • Zhang Hong1, Zhang Ruifang1, Zhou Jiancheng2, Sun Fangliang1, Jiang Delong3
Author information +
History +

Abstract

To accomplish the low-carbon operation of IES and take into account the interests of both operators and users, the paper raises a two-layer optimization model for the operator-user master-slave game viewing hybrid carbon policies. In the day-ahead dispatching stage, the upper layer aims at maximizing the operator’s revenue, introduces ladder-type carbon trading and carbon tax cost to constrain carbon emissions of IES, and determines the operator’s pricing strategy and the output of each piece of equipment based on the energy consumption strategy fed by the users. The lower tier users aim to minimize the energy purchase cost and use thermal inertia and electrical demand response to determine the required electrical heating and cooling load. Finally, the lower deck model is transformed into the upper deck constraint to gain a single deck mixed-integer linear pattern, and the justifiability of the proposed approach is shown through simulation example analysis, which can significantly decrease the carbon emission of IES and reduce the cost of users.

Key words

game theory / scheduling / mathematical models / carbon trading / integrated energy system

Cite this article

Download Citations
Zhang Hong, Zhang Ruifang, Zhou Jiancheng, Sun Fangliang, Jiang Delong. LOW-CARBON ECONOMIC DISPATCH OF INTEGRATED ENERGY SYSTEM IN CAMPUS BASED ON STACKELBERG GAME AND HYBRID CARBON POLICY[J]. Acta Energiae Solaris Sinica. 2023, 44(9): 9-17 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0715

References

[1] 潘华, 梁作放, 肖雨涵, 等. 多场景下区域综合能源系统的优化运行[J]. 太阳能学报, 2021, 42(1): 484-492.
PAN H, LIANG Z F, XIAO Y H, et al.Optimal operation of regional integrated energy system under multiple scenes[J]. Acta energiae solaris sinica, 2021, 42(1): 484-492.
[2] 王永真, 康利改, 张靖, 等. 综合能源系统的发展历程、典型形态及未来趋势[J]. 太阳能学报, 2021, 42(8): 84-95.
WANG Y Z, KANG L G, ZHANG J, et al.Development history, typical form and future trend of integrated energy system[J]. Acta energiae solaris sinica, 2021, 42(8): 84-95.
[3] 张晓辉, 梁军雪, 赵翠妹, 等. 基于碳交易的含燃气机组的低碳电源规划[J]. 太阳能学报, 2020, 41(7): 92-98.
ZHANG X H, LIANG J X, ZHAO C M, et al.Research on low-carbon power planning with gas turbine units based on carbon transactions[J]. Acta energiae solaris sinica, 2020, 41(7): 92-98.
[4] 王振浩, 许京剑, 田春光, 等. 计及碳交易成本的含风电电力系统热电联合调度[J]. 太阳能学报, 2020, 41(12): 245-253.
WANG Z H, XU J J, TIAN C G, et al.Combined heat and power scheduling strategy considering carbon trading cost in wind power system[J]. Acta energiae solaris sinica, 2020, 41(12): 245-253.
[5] 张晓辉, 刘小琰, 钟嘉庆. 考虑奖惩阶梯型碳交易和电-热转移负荷不确定性的综合能源系统规划[J]. 中国电机工程学报, 2020, 40(19): 6132-6142.
ZHANG X H, LIU X Y, ZHONG J Q.Integrated energy system planning considering a reward and punishment ladder-type carbon trading and electric-thermal transfer load uncertainty[J]. Proceedings of the CSEE, 2020, 40(19): 6132-6142.
[6] 陈登勇, 刘方, 刘帅. 基于阶梯碳交易的含P2G-CCS耦合和燃气掺氢的虚拟电厂优化调度[J]. 电网技术, 2022, 46(6): 2042-2054.
CHEN D Y, LIU F, LIU S.Optimization of virtual power plant scheduling coupling with P2G-CCS and doped with gas hydrogen based on stepped carbon trading[J]. Power system technology, 2022, 46(6): 2042-2054.
[7] OLSEN D J, DVORKIN Y, FERNÁNDEZ-BLANCO R, et al. Optimal carbon taxes for emissions targets in the electricity sector[J]. IEEE transactions on power systems, 2018, 33(6): 5892-5901.
[8] CHENG Y H, ZHANG N, ZHANG B S, et al.Low-carbon operation of multiple energy systems based on energy-carbon integrated prices[J]. IEEE transactions on smart grid, 2020, 11(2): 1307-1318.
[9] 周长城, 马溪原, 郭晓斌, 等. 基于主从博弈的工业园区综合能源系统互动优化运行方法[J]. 电力系统自动化, 2019, 43(7): 74-80.
ZHOU C C, MA X Y, GUO X B, et al.Leader-follower game based optimized operation method for interaction of integrated energy system in industrial park[J]. Automation of electric power systems, 2019, 43(7): 74-80.
[10] 陈厚合, 吴桐, 李本新, 等. 考虑建筑热惯性的园区代理商电价策略及用能优化[J]. 电力系统自动化, 2021, 45(3): 148-156.
CHEN H H, WU T, LI B X, et al.Electricity pricing strategy of park retailer and energy optimization considering thermal inertia of building[J]. Automation of electric power systems, 2021, 45(3): 148-156.
[11] LIU N, ZHOU L J, WANG C, et al.Heat-electricity coupled peak load shifting for multi-energy industrial parks: a Stackelberg game approach[J]. IEEE transactions on sustainable energy, 2020, 11(3): 1858-1869.
[12] 王海洋, 李珂, 张承慧, 等. 基于主从博弈的社区综合能源系统分布式协同优化运行策略[J]. 中国电机工程学报, 2020, 40(17): 5435-5445.
WANG H Y, LI K, ZHANG C H, et al.Distributed coordinative optimal operation of community integrated energy system based on Stackelberg game[J]. Proceedings of the CSEE, 2020, 40(17): 5435-5445.
[13] 李鹏, 吴迪凡, 李雨薇, 等. 基于综合需求响应和主从博弈的多微网综合能源系统优化调度策略[J]. 中国电机工程学报, 2021, 41(4): 1307-1321, 1538.
LI P, WU D F, LI Y W, et al.Optimal dispatch of multi-microgrids integrated energy system based on integrated demand response and Stackelberg game[J]. Proceedings of the CSEE, 2021, 41(4): 1307-1321, 1538.
[14] 郑浩, 崔双喜, 郑娟强, 等. 考虑负荷响应的冷电联供双层调度策略[J]. 太阳能学报, 2022, 43(3): 323-329.
ZHENG H, CUI S X, ZHENG J Q, et al.Double dispatching strategy of combined cooling and power system considering load response[J]. Acta energiae solaris sinica, 2022, 43(3): 323-329.
[15] 杨欢红, 谢明洋, 黄文焘, 等. 含废物处理的城市综合能源系统低碳经济运行策略[J]. 电网技术, 2021, 45(9): 3545-3552.
YANG H H, XIE M Y, HUANG W T, et al.Low-carbon economic operation of urban integrated energy system including waste treatment[J]. Power system technology, 2021, 45(9): 3545-3552.
[16] 李家珏, 李平, 王刚, 等. 计及弃风消纳的热电联产系统的日前调度模型[J]. 太阳能学报, 2021, 42(9): 295-301.
LI J J, LI P, WANG G, et al.Day-to-day scheduling model for cogeneration system accounting for wind power accommodation[J]. Acta energiae solaris sinica, 2021, 42(9): 295-301.
[17] 王义军, 陈美霖, 牟雪峰, 等. 考虑储能及多负荷需求响应的微电网优化运行[J]. 东北电力大学学报, 2021, 41(2): 108-118.
WANG Y J, CHEN M L, MOU X F, et al.Operation of microgrid considering energy storage and response of power and thermal loads[J]. Journal of Northeast Electric Power University, 2021, 41(2): 108-118.
[18] 张虹, 马鸿君, 闫贺, 等. 计及WCVaR评估的微电网供需协同两阶段日前优化调度[J]. 电力系统自动化, 2021, 45(2): 55-63.
ZHANG H, MA H J, YAN H, et al.Two-stage day-ahead optimal microgrid scheduling with coordination between supply and demand considering WCVaR assessment[J]. Automation of electric power systems, 2021, 45(2): 55-63.
[19] 陈厚合, 李泽宁, 靳小龙, 等. 集成智能楼宇的主动配电网建模及优化方法[J]. 中国电机工程学报, 2018, 38(22): 6550-6563.
CHEN H H, LI Z N, JIN X L, et al.Modeling and optimization of active distribution network with integrated smart buildings[J]. Proceedings of the CSEE, 2018, 38(22): 6550-6563.
PDF(1966 KB)

Accesses

Citation

Detail

Sections
Recommended

/