REGIONAL INERTIA CONFIGURATION METHOD OF RENEWABLE ENERGY POWER SYSTEM CONSIDERING RoCoF CONSTRAINT

Zhang Junli, Xu Zheng

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (9) : 18-28.

PDF(2037 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2037 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (9) : 18-28. DOI: 10.19912/j.0254-0096.tynxb.2022-0723

REGIONAL INERTIA CONFIGURATION METHOD OF RENEWABLE ENERGY POWER SYSTEM CONSIDERING RoCoF CONSTRAINT

  • Zhang Junli, Xu Zheng
Author information +
History +

Abstract

The necessity of configuring inertia regionally for large-scale renewable energy power system is analyzed. To achieve this goal, a suggestion is put forward, which says that the power synchronization control can be utilized to configure virtual inertia for voltage source converters. Based on these, a regional inertia configuration method considering a constraint on the rate of change of frequency (RoCoF) is proposed. In this method, firstly, the system to be studied is partitioned according to the consistency of frequency response.Then, the maximum unbalanced power of each region under disturbance is calculated by combining the internal disturbance in the region, the change of the power on transmission lines between different regions and the load response to the disturbed voltage. After that, the inertia demand could be obtained and the inertia configuration could be carried out regionally. Finally, in the case study of East China Power Grid, the inertia requirement of each region in the system is illustrated, and the effectiveness of the proposed regional inertia configuration method is verified.

Key words

electric power systems / frequency stability / renewable energy / rate of change of frequency (RoCoF) / inertia time constant

Cite this article

Download Citations
Zhang Junli, Xu Zheng. REGIONAL INERTIA CONFIGURATION METHOD OF RENEWABLE ENERGY POWER SYSTEM CONSIDERING RoCoF CONSTRAINT[J]. Acta Energiae Solaris Sinica. 2023, 44(9): 18-28 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0723

References

[1] TIELENS P, HERTEM D V.The relevance of inertia in power systems[J]. Renewable and sustainable energy reviews, 2016, 55: 999-1009.
[2] 辛保安, 单葆国, 李琼慧, 等. “双碳”目标下“能源三要素”再思考[J]. 中国电机工程学报, 2022, 42(9):3117-3126.
XIN B A, SHAN B G, LI Q H, et al.Rethinking of the “three elements of energy” toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2022, 42(9): 3117-3126.
[3] 周孝信, 鲁宗相, 刘应梅, 等. 中国未来电网的发展模式和关键技术[J]. 中国电机工程学报, 2014, 34(29):4999-5008.
ZHOU X X, LU Z X, LIU Y M, et al.Development models and key technologies of future grid in China[J]. Proceedings of the CSEE, 2014, 34(29): 4999-5008.
[4] REZKALLA M, PERTL M, MARINELLI M.Electric power system inertia: requirements, challenges and solutions[J]. Electrical engineering, 2018, 100: 2677-2693.
[5] 方勇杰. 英国“8·9”停电事故对频率稳定控制技术的启示[J]. 电力系统自动化, 2019, 43(24): 1-5.
FANG Y J.Reflections on frequency stability control technology based on the blackout event of 9 August 2019 in UK[J]. Automation of electric power systems, 2019, 43(24): 1-5.
[6] 孙华东, 许涛, 郭强, 等. 英国“8·9”大停电事故分析及对中国电网的启示[J]. 中国电机工程学报, 2019, 39(21): 6183-6192.
SUN H D, XU T, GUO Q, et al.Analysis on blackout in Great Britain Power Grid on August 9th, 2019 and its enlightenment to power grid in China[J]. Proceedings of the CSEE, 2019, 39(21): 6183-6192.
[7] WILSON D, YU J, AL-ASHWAL N, et al.Measuring effective area inertia to determine fast-acting frequency response requirements[J]. International journal of electrical power & energy systems, 2019, 113: 1-8.
[8] JOHNSON S C, PAPAGEORGIOU D J, MALLAPRAGADA D S, et al.Evaluating rotational inertia as a component of grid reliability with high penetrations of variable renewable energy[J]. Energy, 2019, 180: 258-271.
[9] RATNAM K S, PALANISAMY K, YANG G Y.Future low-inertia power systems: requirements, issues, and solutions: a review[J]. Renewable and sustainable energy reviews, 2020, 124: 109773.
[10] 黄林彬, 辛焕海, 黄伟, 等. 含虚拟惯量的电力系统频率响应特性定量分析方法[J]. 电力系统自动化, 2018, 42(8): 31-38.
HUANG L B, XIN H H, HUANG W, et al.Quantified analysis method of frequency response characteristics for power systems with virtual inertia[J]. Automation of electric power systems, 2018, 42(8): 31-38.
[11] CAO X, STEPHEN B, ABDULHADI I F, et al.Switching Markov Gaussian models for dynamic power system inertia estimation[J]. IEEE transactions on power systems, 2016, 31(5): 3394-3403.
[12] ASHTON P M, SAUNDERS C S, TAYLOR G A, et al.Inertia estimation of the GB power system using synchrophasor measurements[J]. IEEE transactions on power systems, 2015, 30(2): 701-709.
[13] 卢庭苇. 大规模风电并网电力系统惯性评估[D]. 重庆:重庆理工大学, 2020.
LU T W.Estimation of system inertia based on high penetration wind power generation connected to the power system[D]. Chongqing: Chongqing University of Technology, 2020.
[14] 李世春, 邓长虹, 龙志君, 等. 风电场等效虚拟惯性时间常数计算[J]. 电力系统自动化, 2016, 40(7): 22-29.
LI S C, DENG C H, LONG Z J, et al.Calculation of equivalent virtual inertial time constant of wind farm[J]. Automation of electric power systems, 2016, 40(7): 22-29.
[15] 刘皓明, 任秋业, 张占奎, 等. 双馈风机等效惯性时间常数计算及转差率反馈惯量控制策略[J]. 电力系统自动化, 2018, 42(17): 49-57.
LIU H M, REN Q Y, ZHANG Z K, et al.Calculation of equivalent inertia time constant for doubly-fed induction generators and slip-feedback inertia control strategy[J]. Automation of electric power systems, 2018, 42(17): 49-57.
[16] 唐晓骏, 蔡继朝, 马世英, 等. 双馈风电并网对电力系统频率响应的影响[J]. 电力系统及其自动化学报, 2020, 32(10): 37-43, 62.
TANG X J, CAI J Z, MA S Y, et al.Effects of DFIG wind power grid-connection on frequency response of power system[J]. Proceedings of the CSU-EPSA, 2020, 32(10): 37-43, 62.
[17] 邹培根, 孟建辉, 王毅, 等. 灵活虚拟同步机主要控制参数对系统频率稳定性的影响分析[J]. 高电压技术, 2018, 44(4): 1335-1342.
ZOU P G, MENG J H, WANG Y, et al.Influence analysis of the main control parameters in FVSG on the frequency stability of the system[J]. High voltage engineering, 2018, 44(4): 1335-1342.
[18] 徐波, 章林炜, 俞向栋, 等. 基于系统辨识的电力系统惯量在线评估改进方法[J]. 电力系统保护与控制, 2021, 49(18): 62-69.
XU B, ZHANG L W, YU X D, et al.An improved method of power system inertia online estimation based on system identification[J]. Power system protection and control, 2021, 49(18): 62-69.
[19] CHAMORRO H R, SEVILLA F R S, GONZALEZ-LONGATT F, el al. Innovative primary frequency control in low-inertia power systems based on wide-area RoCoF sharing[J]. IET energy systems integration, 2020, 2(2): 151-160.
[20] 单煜, 汪震, 周昌平, 等. 基于分段频率变化率的风电机组一次调频控制策略[J]. 电力系统自动化, 2022, 46(11): 19-26.
SHAN Y, WANG Z, ZHOU C P, et al.Control strategy of primary frequency regulation for wind turbine based on segmented rate of change of frequency[J]. Automation of electric power systems, 2022, 46(11): 19-26.
[21] 盛四清, 李朋旺, 顾清. 提高风电渗透率极限的火电机组惯性参数优化方法[J]. 电力系统自动化, 2020, 44(2): 181-188.
SHENG S Q, LI P W, GU Q.Optimization method for inertia parameters of thermal power units to improve wind power penetration limit[J]. Automation of electric power systems, 2020, 44(2): 181-188.
[22] 刘毅力, 李丁, 李明贤, 等. RoCoF下垂控制的直驱式风电系统惯量特性分析[J]. 电源学报, 2020, 18(6):94-104.
LIU Y L, LI D, LI M X, et al.Inertia characteristic analysis of RoCoF droop control based direct-driven wind power system[J]. Journal of power supply, 2020, 18(6): 94-104.
[23] GU H J, YAN R F, SAHA T K.Minimum synchronous inertia requirement of renewable power systems[J]. IEEE transactions on power systems, 2018, 33(2): 1533-1543.
[24] DALY P, FLYNN D, CUNNIFFE N.Inertia considerations within unit commitment and economic dispatch for systems with high non-synchronous penetrations[C]//2015 IEEE Eindhoven PowerTech. Eindhoven, Netherlands, 2015.
[25] 李东东, 刘强, 徐波, 等. 考虑频率稳定约束的新能源电力系统临界惯量计算方法[J]. 电力系统保护与控制, 2021, 49(22):24-33.
LI D D, LIU Q, XU B, et al.New energy power system critical inertia estimation method considering frequency stability constraints[J]. Power system protection and control, 2021, 49(22): 24-33.
[26] 刘方蕾, 胥国毅, 王凡, 等. 基于差值计算法的系统分区惯量评估方法[J]. 电力系统自动化, 2020, 44(20):46-53.
LIU F L, XU G Y, WANG F, et al.Assessment method of system partition inertia based on differential calculation method[J]. Automation of electric power systems, 2020, 44(20): 46-53.
[27] 赵冬梅, 王闯, 谢家康, 等. 考虑惯量中心频率偏移的自编码器暂态稳定评估[J]. 电网技术, 2022, 46(2):662-670.
ZHAO D M, WANG C, XIE J K, et al.Transient stability assessment of auto encoder considering frequency shift of inertia center[J]. Power system technology, 2022, 46(2): 662-670.
[28] 秦晓辉, 苏丽宁, 迟永宁, 等. 大电网中虚拟同步发电机惯量支撑与一次调频功能定位辨析[J]. 电力系统自动化, 2018, 42(9): 36-43.
QIN X H, SU L N, CHI Y N, et al.Functional orientation discrimination of inertia support and primary frequency regulation of virtual synchronous generator in large power grid[J]. Automation of electric power systems, 2018, 42(9): 36-43.
[29] 王玎, 袁小明. 异步电机机电时间尺度有效惯量评估及其对可再生能源并网系统频率动态的影响[J]. 中国电机工程学报, 2018, 38(24): 7258-7266, 7452.
WANG D, YUAN X M.Available inertia estimation of induction machine in electromechanical timescale and its effects on frequency dynamics of power systems with renewable energy[J]. Proceedings of the CSEE, 2018, 38(24): 7258-7266, 7452.
[30] 徐政, 肖晃庆, 张哲任, 等. 柔性直流输电系统[M]. 2版. 北京: 机械工业出版社, 2017: 133-142.
XU Z, XIAO H Q, ZHANG Z R, et al.Voltage source converter based hvdc power transmission systems[M]. 2nd edition. Beijing: China Machine Press, 2017: 133-142.
[31] NOROUZI A H, SHARAF A M.Two control schemes to enhance the dynamic performance of the STATCOM and SSSC[J]. IEEE transactions on power delivery, 2005, 20(1): 435-442.
[32] 王宝财, 孙华东, 李文锋, 等. 考虑动态频率约束的电力系统最小惯量评估[J]. 中国电机工程学报, 2022, 42(1):114-127.
WANG B C, SUN H D, LI W F, et al.Minimum inertia estimation of power system considering dynamic frequency constraints[J]. Proceedings of the CSEE, 2022, 42(1): 114-127.
[33] 倪以信, 陈寿孙, 张宝霖. 动态电力系统的理论和分析[M]. 北京: 清华大学出版社, 2002: 185-190.
NI Y X, CHEN S S, ZHANG B L.Theory and analysis of dynamic power systems[M]. Beijing: Tsinghua University Press, 2002: 185-190.
[34] 杨森, 杜文娟, 王旭斌, 等. 风火-需求侧响应协调频率控制方法[J]. 电网技术, 2017, 41(3): 845-853.
YANG S, DU W J, WANG X B, et al.Coordinated frequency control method of wind/thermal/demand response[J]. Power system technology, 2017, 41(3): 845-853.
[35] KUNDUR P. Power system stability and control[M]. New York: McGraw-Hill, 1994: 184-187, 271-278.
PDF(2037 KB)

Accesses

Citation

Detail

Sections
Recommended

/