MODELING AND VALIDATION OF MINUTE-SCALE SOLAR IRRADIANCE DIRECT AND DIFFUSE SEPARATION BASED ON MLP-GARSON MODEL

Zhang Qiyuan, Wang Lei, Chen Tianpeng, Xie Peng, Zhang Zhen, Quan Peng

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (4) : 531-538.

PDF(9148 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(9148 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (4) : 531-538. DOI: 10.19912/j.0254-0096.tynxb.2022-0735

MODELING AND VALIDATION OF MINUTE-SCALE SOLAR IRRADIANCE DIRECT AND DIFFUSE SEPARATION BASED ON MLP-GARSON MODEL

  • Zhang Qiyuan1,2, Wang Lei1, Chen Tianpeng1, Xie Peng1, Zhang Zhen2,3, Quan Peng4
Author information +
History +

Abstract

In order to simulate the solar radiation fluctuation on the minute scale, based on the 2018—2021 minute-scale radiation data of Changzhou city, Jiangsu province, the Garson weight algerithm is used to optimize the input characteristics of the model, and the time series data of the first 10-minute clearness index kt are introduced as additional features to establish a new minute-scale separation model based on time series data and MLP neural network. On this basis, the parameters of three newly proposed minute-scale separation models, which are Engerer2 model, Starke model and Yang model, respectively, are locally optimized and verified by test experiments. The verification results show that the new model using time series data and MLP neural network can effectively extract solar radiation fluctuation information in a short time. The normalized root mean square error (enRMSE) of the new model is 10.690%. The accuracy of the new model is 17.08% higher than the Yang model.

Key words

solar radiation / machine learning / neural network / separation modeling / volatility

Cite this article

Download Citations
Zhang Qiyuan, Wang Lei, Chen Tianpeng, Xie Peng, Zhang Zhen, Quan Peng. MODELING AND VALIDATION OF MINUTE-SCALE SOLAR IRRADIANCE DIRECT AND DIFFUSE SEPARATION BASED ON MLP-GARSON MODEL[J]. Acta Energiae Solaris Sinica. 2023, 44(4): 531-538 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0735

References

[1] 冯巍, 董宏, 杨柳, 等. 太阳辐射直散分离模型比较研究: 以北京地区为例[J]. 土木建筑与环境工程, 2015, 37(1): 12-17.
FENG W, DONG H, YANG L, et al.Comparison of the fraction model of direct and diffuse solar radiation: taking Beijing area as an example[J]. Journal of civil and environmental engineering, 2015, 37(1): 12-17.
[2] LIU B Y H, JORDAN R C. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation[J]. Solar energy, 1960, 4(3): 1-19.
[3] GUEYMARD C A, RUIZ-ARIAS J A. Extensive worldwide validation and climate sensitivity analysis of direct irradiance predictions from 1-min global irradiance[J]. Solar energy, 2016, 128: 1-30.
[4] ENGERER N A.Minute resolution estimates of the diffuse fraction of global irradiance for southeastern Australia[J]. Solar energy, 2015, 116: 215-237.
[5] INMAN R H, CHU Y H, COIMBRA C F M. Cloud enhancement of global horizontal irradiance in California and Hawaii[J]. Solar energy, 2016, 130: 128-138.
[6] 蒋俊霞, 高晓清, 吕清泉, 等. 基于地基云图的云跟踪与太阳辐照度超短期预报方法研究[J]. 太阳能学报, 2020, 41(5): 351-358.
JIANG J X, GAO X Q, LYU Q Q, et al.Study on cloud tracking and solar irradiance ultra-short-term forecasting based on TSI images[J]. Acta energiae solaris sinica, 2020, 41(5): 351-358.
[7] CHEN X Y, DU Y, LIM E, et al.Sensor network based PV power nowcasting with spatio-temporal preselection for grid-friendly control[J]. Applied energy, 2019, 255:113760.
[8] STARKE A R, LEMOS L F L, BOLAND J, et al. Resolution of the cloud enhancement problem for one-minute diffuse radiation prediction[J]. Renewable energy, 2018, 125: 472-484.
[9] YANG D Z, BOLAND J.Satellite-augmented diffuse solar radiation separation models[J]. Journal of renewable and sustainable energy, 2019, 11(2): 023705.
[10] YANG D Z.Temporal-resolution cascade model for separation of 1-min beam and diffuse irradiance[J]. Journal of renewable and sustainable energy, 2021, 13(5): 056101.
[11] BOLAND J, HUANG J, RIDLEY B.Decomposing global solar radiation into its direct and diffuse components[J]. Renewable and sustainable energy reviews, 2013, 28: 749-756.
[12] TAPAKIS R, MICHAELIDES S, CHARALAMBIDES A G.Computations of diffuse fraction of global irradiance: part 2:neural networks[J]. Solar energy, 2016, 139: 723-732.
[13] SANTOS C M D, ESCOBEDO J F, TERAMOTO É T, et al. Assessment of ANN and SVM models for estimating normal direct irradiation (Hb)[J]. Energy conversion and management, 2016, 126: 826-836.
[14] 李芬, 刘迪, 胡超, 等. 基于PCA-LMBP神经网络的北京地区直散分离预测[J]. 水电能源科学, 2017, 35(4):208-212.
LI F, LIU D, HU C, et al.Prediction of beam-diffuse radiation separation in Beijing based on PCA-LMBP neural network[J]. Water resources and power, 2017, 35(4): 208-212.
[15] BRIGHT J M, ENGERER N A.Engerer2: Global re-parameterisation, update, and validation of an irradiance separation model at different temporal resolutions[J]. Journal of renewable and sustainable energy, 2019, 11(3): 033701.
[16] STARKE A R, LEMOS L F L, BARNI C M, et al. Assessing one-minute diffuse fraction models based on worldwide climate features[J]. Renewable energy, 2021, 177: 700-714.
[17] IQBAL M.An introduction to solar radiation[M]. Vancouver: Academic Press, 1983: 1-28.
[18] GUEYMARD C A.A reevaluation of the solar constant based on a 42-year total solar irradiance time series and a reconciliation of spaceborne observations[J]. Solar energy, 2018, 168: 2-9.
[19] THRELKELD J L, JORDAN R C.Direct solar radiation available on clear days[J]. Heat piping air cond, 1957, 29(12): 135-145.
[20] FORSTINGER A, WILBERT S, JENSEN A R, et al.Expert quality control of solar radiation ground data sets[C]//Proceedings of the ISES Solar World Congress 2021, Virtual Conference: International Solar Energy Society, 2021: 1-12.
[21] GARSON G D.Interpreting neural-network connection weights[J]. AI expert, 1991, 6(4): 46-51.
[22] LAGARIAS J C, REEDS J A, WRIGHT M H, et al.Convergence properties of the nelder-mead simplex method in low dimensions[J]. SIAM journal on optimization, 1998, 9(1): 112-147.
PDF(9148 KB)

Accesses

Citation

Detail

Sections
Recommended

/