STUDY ON FATIGUE PROPERTIES OF DOUBLE-PLATE THROUGH-CORE BOLTED JOINTS IN WIND TURBINE TOWERS

Guo Hongchao, Gao Xiang, Zhang Sijia, Liang Gang, Liu Yunhe

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (9) : 377-383.

PDF(1855 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1855 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (9) : 377-383. DOI: 10.19912/j.0254-0096.tynxb.2022-0756

STUDY ON FATIGUE PROPERTIES OF DOUBLE-PLATE THROUGH-CORE BOLTED JOINTS IN WIND TURBINE TOWERS

  • Guo Hongchao1,2, Gao Xiang1,2, Zhang Sijia2,3, Liang Gang2, Liu Yunhe4
Author information +
History +

Abstract

A rectangular concrete-filled steel tubular bundle wind turbine tower structure is proposed. High-cycle fatigue tests and finite element analysis were carried out on the double-plate through-core bolt connection joint of this tower. The fatigue failure mode and fatigue life of the joint were obtained. The results show that the fatigue failure mode of this double-plate through-core bolt connection joint is shear failure of the high-strength bolts. The damage is concentrated at the junction with the steel plate. Fatigue cracks in the bolts at the steel-concrete joint face and at the nut. The core-piercing bolt fractures in three parts under shear fatigue. Finite element analysis shows that the specification of bolts has obvious effects on the fatigue properties of specimens. If the bolt diameter is increased, the fatigue life of joints will be increased but the fatigue limit will be reduced. The thickness of the plate has no significant effect on fatigue properties.

Key words

wind turbine towers / bolted joints / fatigue testing / rectangular concrete filled steel tube bundle / FEA

Cite this article

Download Citations
Guo Hongchao, Gao Xiang, Zhang Sijia, Liang Gang, Liu Yunhe. STUDY ON FATIGUE PROPERTIES OF DOUBLE-PLATE THROUGH-CORE BOLTED JOINTS IN WIND TURBINE TOWERS[J]. Acta Energiae Solaris Sinica. 2023, 44(9): 377-383 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0756

References

[1] ENGSTÖM S, LYRNER T, HASSANZADEH M, et al. Tall towers for large wind turbines[J]. Report from vindforsk project, 2010, 342(50): 122.
[2] LANIER M.LWST phase I project conceptual design study: Evaluation of design and construction approaches for economical hybrid steel/concrete wind turbine towers[R]. Colorado: National renewable energy laboratory, 2005.
[3] EIZE V D.Concrete-steel hybrid tower from ATS[J]. Renewable energy world, 2009, 12(5): 109-112.
[4] 王宇航, 王姝琪, 周绪红, 等. 钢板-混凝土组合塔筒钢板屈曲承载性能研究[J]. 建筑结构学报, 2021, 42(增刊2): 419-426.
WANG Y H, WANG S Q, ZHOU X H, et al.Research on buckling bearing capacity of steel plate in steel-concrete composite tower[J]. Journal of building structures, 2021, 42(S2): 419-426.
[5] 许斌, 李知. 预应力混凝土-钢组合塔架连接段应力模拟分析[J]. 应用力学学报, 2015, 32(6): 999-1005.
XU B, LI Z.Numerical simulation on a connection of prestressed concrete-steel hybrid wind turbine tower[J]. Chinese journal of applied mechanics, 2015, 32(6): 999-1005.
[6] 许斌, 李泽宇, 陈洪兵. 预应力混凝土-钢组合风电塔架塔段优化研究[J]. 湖南大学学报(自然科学版), 2016, 43(7): 25-31.
XU B, LI Z Y, CHEN H B.Geometry optimisation on prestressed concrete and steel segments of wind turbine towers[J]. Journal of Hunan University(natural science edition), 2016, 43(7): 25-31.
[7] 龙凯, 贾娇, 肖介平. 基于Schmidt-Neuper算法塔筒螺栓疲劳强度研究[J]. 太阳能学报, 2014, 35(10): 1904-1910.
LONG K,JIA J,XIAO J P.Study of bolt fatigue strength for tower of HAWT based on Schmidt-Neuper algorithm[J]. Acta energiae solaris sinica, 2014, 35(10): 1904-1910.
[8] 闻洋, 蔡俊青, 付立平. 格构式钢管混凝土风电塔架球板式节点协同工作性能研究[J]. 太阳能学报, 2021, 42(3): 21-27.
WEN Y,CAI J Q, FU L P.Cooperative working performance of spherical plate joints of latticed concrete-filled steel tubular wind turbine tower[J]. Acta energiae solaris sinica, 2021, 42(3): 21-27.
[9] AJAEI B B, SOYOZ S.Effects of preload deficiency on fatigue demands of wind turbine tower bolts[J]. Journal of constructional steel research, 2020, 166: 105933.
[10] 高春彦, 李斌, 史治宇. 钢管混凝土风电塔架节点非线性有限元分析[J]. 建筑结构学报, 2013, 34(增刊1): 140-146.
GAO C Y,LI B,SHI Z Y.Nonlinear finite element analysis of concrete-filled steel tubular wind turbine tower joints[J]. Journal of building structures, 2013, 34(S1): 140-146.
[11] 吴明明. 干连接预应力预制混凝土风电塔筒结构抗震性能研究[D]. 沈阳: 沈阳建筑大学, 2021.
WU M M.Seisimic performance of dry-connected prestressed precast concrete wind turbine tower (WTT) structures[D]. Shenyang: Shenyang Jianzhu University, 2021
[12] GB/T 228.1—2010,金属材料拉伸试验第1部分:室温试验方法[S].
GB/T 228.1—2010,Metallic materials: tensile tests: part 1: test methods at room temperature[S].
[13] GB 50010—2010,混凝土结构设计规范[S].
GB 50010—2010,Code for design of concrete structures[S].
[14] 何余良, 周仁甫, 胡立普, 等. 混杂纤维混凝土螺栓剪力键疲劳性能[J]. 长安大学学报(自然科学版), 2021, 41(3): 95-105.
HE Y L, ZHOU R F, HU L P, et al.Fatigue properties of bolt connectors in HFRC[J]. Journal of Chang’an University(natural science edition), 2021, 41(3): 95-105.
[15] GB 50017—2017,钢结构设计标准[S].
GB 50017—2017, Standard for design of steel structures[S].
PDF(1855 KB)

Accesses

Citation

Detail

Sections
Recommended

/