TiN THIN FILM WITH ADJUSTABLE PHOTOELECTRIC PERFORMANCE AND ITS APPLICATION IN TOPCon SOLAR CELL

Bai Yu, He Jialong, Li Junjun, Su Rong, Chen Tao, Yu Jian

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (9) : 72-77.

PDF(1916 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1916 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (9) : 72-77. DOI: 10.19912/j.0254-0096.tynxb.2022-0757

TiN THIN FILM WITH ADJUSTABLE PHOTOELECTRIC PERFORMANCE AND ITS APPLICATION IN TOPCon SOLAR CELL

  • Bai Yu, He Jialong, Li Junjun, Su Rong, Chen Tao, Yu Jian
Author information +
History +

Abstract

Titanium nitride (TiN) thin films with adjustable photoelectric properties were fabricated by DC magnetron sputtering. The results show that the transmittance of TiN thin film improves with the increase of deposition pressure and nitrogen concentration. The conductivity of the TiN films can be enhanced with the increasing sputtering power, and decreases when deposition pressure and nitrogen concentration increased. The average transmittance at wisible wavelength of TiN is 0%-60%. The TiN film prepared at low nitrogen concentration and deposition pressure shows excellent conductivity (4000 S/cm). The application of high-conductivity TiN films in Tunnel Oxide Passivated Contact(TOPCon) solar cells, which improved the contact between the polycrystalline silicon(Poly-Si) layer and the silver electrode, thus increased the fill factor, providing an effective way to realize efficient TOPCon solar cells.

Key words

solar cells / magnetron sputtering / conductivity / tatinium nitride / TOPCon

Cite this article

Download Citations
Bai Yu, He Jialong, Li Junjun, Su Rong, Chen Tao, Yu Jian. TiN THIN FILM WITH ADJUSTABLE PHOTOELECTRIC PERFORMANCE AND ITS APPLICATION IN TOPCon SOLAR CELL[J]. Acta Energiae Solaris Sinica. 2023, 44(9): 72-77 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0757

References

[1] FELDMANN F, BIVOUR M, REICHEL C, et al.Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics[J]. Solar energy materials and solar cells, 2014, 120: 270-274.
[2] PEIBST R, LARIONOVA Y,REITER S, et al.Implementation of n+ and p+ poly junctions on front and rear side of double-side contacted industrial silicon solar cells[C]//32nd European Photovoltaic Solar Energy Conference and Exhibition. Munich, Germany, 2016.
[3] RICHTER A, BENICK J, FELDMANN F, et al.N-type Si solar cells with passivating electron contact: identifying sources for efficiency limitations by wafer thickness and resistivity variation[J]. Solar energy materials and solar cells, 2017, 173: 96-105.
[4] HAASE F, HOLLEMANN C, SCHAFER S, et al.Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells[J]. Solar energy materials and solar cells, 2018, 186: 184-193.
[5] 吕欣, 林涛, 董鹏. 背表面掺杂对n型TOPCon电池特性的影响研究[J]. 太阳能学报, 2021, 42(11): 41-45.
LYU X, LIN T, DONG P.Influence of back surface doping concentration on n-type TOPCon solar cells[J]. Acta energiae solaris sinica, 2021, 42(11): 41-45.
[6] 翟金叶, 张伟, 王子谦, 等. 21.5%以上效率Panda-TOPCon双面电池技术研究[J]. 太阳能学报, 2019, 40(4): 1029-1033.
ZHAI J Y, ZHANG W, WANG Z Q, et al.Research of >21.5% high efficiency panda-TOPCon bifacial solar cell[J]. Acta energiae solaris sinica, 2019, 40(4): 1029-1033.
[7] WANG Q Q, WU W P, CHEN D M, et al.Study on the cleaning process of n+-poly-Si wraparound removal of TOPCon solar cells[J]. Solar energy, 2020, 211: 324-335.
[8] YAN D, CUEVAS A, WAN Y M, et al.Passivating contacts for silicon solar cells based on boron-diffused recrystallized amorphous silicon and thin dielectric interlayers[J]. Solar energy materials and solar cells, 2016, 152: 73-79.
[9] STODOLNY M K, ANKER J, GEERLIGS B L J, et al. Material properties of LPCVD processed n-type polysilicon passivating contacts and its application in PERPoly industrial bifacial solar cells[J]. Energy procedia, 2017, 124: 635-642.
[10] TAO Y G, UPADHYAYA V, JONES K, et al.Tunnel oxide passivated rear contact for large area n-type front junction silicon solar cells providing excellent carrier selectivity[J]. AIMS materials science, 2016, 3(1): 180-189.
[11] MACK S, SCHUBE J, FELLMETH T, et al.Metallisation of boron-doped polysilicon layers by screen printed silver pastes[J]. Physica status solidi-rapid research letters(RRL), 2017, 11(12): 1700334.
[12] NIYOMSOAN S, GRANT W, OLSON D L, et al.Variation of color in titanium and zirconium nitride decorative thin films[J]. Thin solid films, 2002, 415(1-2): 187-194.
[13] YU S Y, ZENG Q F, OGANOV A R, et al.Phase stability, chemical bonding and mechanical properties of titanium nitrides: a first-principles study[J]. Physical chemistry chemical physics: PCCP, 2015, 17(17): 11763-11769.
[14] MAAROUF M, HAIDER M B, DRMOSH Q A, et al.X-ray photoelectron spectroscopy depth profiling of As-grown and annealed titanium nitride thin films[J]. Crystals, 2021, 11(3): 239.
[15] 付淑英. 直流磁控溅射制备太阳光谱选择性吸收TiN薄膜[J]. 太阳能学报, 2010, 31(9): 1146-1149.
FU S Y.The solar spectrally selective absorbing thin film by DC magnetron sputtering[J]. Acta energiae solaris sinica, 2010, 31(9): 1146-1149.
[16] YANG X B, LIU W Z, DE BASTIANI M, et al.Dual-function electron-conductive, hole-blocking titanium nitride contacts for efficient silicon solar cells[J]. Joule, 2019, 3(5): 1314-1327.
[17] YU J, PHANG P, SAMUNDSETT C, et al.Titanium nitride electron-conductive contact for silicon solar cells by radio frequency sputtering from a TiN target[J]. ACS applied materials & interfaces, 2020, 12(23): 26177-26183.
[18] LU Z B, LIU X L, HOU G Z, et al.Doping-free titanium nitride carrier selective contacts for efficient organic-inorganic hybrid solar cells[J]. ACS applied energy materials, 2020, 3(9): 9208-9215.
PDF(1916 KB)

Accesses

Citation

Detail

Sections
Recommended

/