RESEARCH ON MACRO AND MESO SIMULATION IN COMPRESSION PROCESS OF SALIX PSAMMOPHILA GRANULES

Yan Wengang, Fu Jiuru, Li Zhen, Yan Li

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (9) : 449-454.

PDF(1686 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1686 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (9) : 449-454. DOI: 10.19912/j.0254-0096.tynxb.2022-0790

RESEARCH ON MACRO AND MESO SIMULATION IN COMPRESSION PROCESS OF SALIX PSAMMOPHILA GRANULES

  • Yan Wengang1, Fu Jiuru1, Li Zhen2, Yan Li2
Author information +
History +

Abstract

The compression molding process of salix psammophila granules was simulated based on finite element and discrete element numerical methods. Furthermore, the forming mechanism of salix psammophila granules was revealed by analyzing the macro and meso mechanical properties at the initial, middle, middle, late and the end stages. The results show that macroscopically the stress of the material column increases gradually from zero, and in the beginning the stress concentrates on the upper surface, then gradually spreads to the upper part, and finally the stress of the whole material column is evenly distributed; Microscopically, the particle distribution changes from loose to dense, the distribution of normal and tangential contact forces changes form the initial disorder to the formation of rhomboid, and then to the large ring, and finally to the small triangular stable structure. The particle velocity field goes straight down and forms a separation zone, which moves down until it disappears.

Key words

biomass / salix psammophila granules / compact forming / discrete element / finite element

Cite this article

Download Citations
Yan Wengang, Fu Jiuru, Li Zhen, Yan Li. RESEARCH ON MACRO AND MESO SIMULATION IN COMPRESSION PROCESS OF SALIX PSAMMOPHILA GRANULES[J]. Acta Energiae Solaris Sinica. 2023, 44(9): 449-454 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0790

References

[1] 李震, 闫莉, 高雨航, 等. 沙柳细枝颗粒压缩成型过程中的模型研究[J]. 锻压技术, 2020, 45(1): 89-95.
LI Z, YAN L, GAO Y H, et al.Research on model for Salix psammophila granules in compression process[J]. Forging & stamping technology, 2020, 45(1): 89-95.
[2] FABORODE M O, O’CALLAGHAN J R. Theoretical analysis of the compression of fibrous agricultural materials[J]. Journal of agricultural engineering research, 1986, 35(3): 175-191.
[3] CARONE M T, PANTALEO A, PELLERANO A.Influence of process parameters and biomass characteristics on the durability of pellets from the pruning residues of Olea europaea L.[J]. Biomass and bioenergy, 2011, 35(1): 402-410.
[4] 汤子锋. 生物质利用领域密集颗粒体系特性研究[D]. 杭州: 浙江大学, 2014.
TANG Z F.Characteristic study of dense particle system in the field of biomass utilization[D]. Hangzhou: Zhejiang University, 2014.
[5] MARTIN C L, BOUVARD D.Study of the cold compaction of composite powders by the discrete element method[J]. Acta materialia, 2003, 51(2): 373-386.
[6] MARTIN C L, BOUVARD D, SHIMA S.Study of particle rearrangement during powder compaction by the Discrete Element Method[J]. Journal of the mechanics and physics of solids, 2003, 51(4): 667-693.
[7] 李永奎, 孙月铢, 白雪卫. 玉米秸秆粉料单模孔致密成型过程离散元模拟[J]. 农业工程学报, 2015, 31(20): 212-217.
LI Y K, SUN Y Z, BAI X W.Extrusion process of corn stalk powder in single orifice die processing based on discrete element method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(20): 212-217.
[8] 涂德浴, 王旭, 许爱华. 生物质平模成型过程中力特性与数值模拟分析[J]. 可再生能源, 2014, 32(3): 341-347.
TU D Y, WANG X, XU A H.Mechanical properties and numerical simulation analysis of the forming process for biomass plane-die briquetting machine[J]. Renewable energy resources, 2014, 32(3): 341-347.
[9] XIN X F, WANG Z W, LEI T Z, et al.Simulation study of single-channel closed cold compression molding for straw biomass[J]. Journal of biobased materials and bioenergy, 2019, 13(3): 329-337.
[10] CLOUGH R W.The finite element method in plane stress analysis[C]//2nd Conference on Electronic Computation.American Society of civil Engineers, Pittsburg, USA,1960.
[11] CUNDALL P A. A computer model for simulating progressive large-scale movements in blocky rock systems[C]//Proceedings of Symposium of International Society of Rock Mechanics, Nancy, France, 1971, Proc 2: 129-136.
[12] 李玉迪, 许宏光, 荆成虎. 闭式生物质热压成型传热模拟[J]. 哈尔滨工业大学学报, 2018, 50(7): 30-37.
LI Y D, XU H G, JING C H.Simulation of heat transfer model of closed biomass thermo-compression formation[J]. Journal of Harbin Institute of Technology, 2018, 50(7): 30-37.
[13] 许凤, JONES-GWYNN L, 孙润仓. 速生灌木沙柳的纤维形态及解剖结构研究[J]. 林产化学与工业, 2006, 26(1): 91-94.
XU F, JONES-GWYNN L, SUN R C.Fibre morphology and anatomical structure of sandlive willow(Salix psammophila)[J]. Chemistry and industry of forest products, 2006, 26(1): 91-94.
[14] 李震, 高雨航, 刘彭, 等. 沙柳细枝颗粒致密成型过程中力链演变的离散元研究[J]. 太阳能学报, 2019, 40(11): 3186-3195.
LI Z, GAO Y H, LIU P, et al.Discrete element study on evolution of force-chain during salix grains dense molding[J]. Acta energiae solaris sinica, 2019, 40(11): 3186-3195.
[15] 李震, 王宏强, 高雨航, 等. 沙柳生物质颗粒致密成型特性的离散元仿真[J]. 锻压技术, 2020, 45(3): 152-158.
LI Z, WANG H Q, GAO Y H, et al.Discrete element simulation on dense forming characteristics for Salix biomass particles[J]. Forging & stamping technology, 2020, 45(3): 152-158.
[16] 李景海, 刘清霞, 翟国亮, 等. 基于颗粒流理论的微灌砂滤层反冲洗过程砂粒速度场模拟[J]. 农业工程学报, 2018, 34(22): 78-83.
LI J H, LIU Q X, ZHAI G L, et al.Numerical simulation of velocity field of sand grains in backwashing process of sand filter layer in micro-irrigation based on granular flows theory[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(22): 78-83.
[17] 李震, 唐立新, 高雨航, 等. 沙柳颗粒致密成型过程中的颗粒轨迹及能耗研究[J]. 锻压技术, 2020, 45(7): 107-116.
LI Z, TANG L X, GAO Y H, et al.Study on particle trajectory and energy consumption in dense forming process of Salix particle[J]. Forging & stamping technology, 2020, 45(7): 107-116.
PDF(1686 KB)

Accesses

Citation

Detail

Sections
Recommended

/