COMBINED HEAT AND POWER ECONOMIC OPTIMAL DISPATCHING IN VIRTUAL POWER PLANT BASED ON STOCHASTIC OPTIMIZATION

Li Jiasen, Wang Jin, Yang Meng, Zhao Shuhao, Zhang Xiaoyue

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (9) : 57-65.

PDF(2044 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2044 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (9) : 57-65. DOI: 10.19912/j.0254-0096.tynxb.2022-0804

COMBINED HEAT AND POWER ECONOMIC OPTIMAL DISPATCHING IN VIRTUAL POWER PLANT BASED ON STOCHASTIC OPTIMIZATION

  • Li Jiasen1,2, Wang Jin1, Yang Meng2, Zhao Shuhao1, Zhang Xiaoyue1
Author information +
History +

Abstract

Aiming at the problem of wind curtailment caused by the energy structure lacked the adjustment ability in the three north area, this paper aggregated wind farm, concentrating solar power plant(CSPP), thermal power units and combined heat and power(CHP) plant into virtual power plant(VPP). Using stochastic optimization to deal with the uncertainty of wind-solar, Latin hypercube sampling (LHS) was used to generated a large number of random scenes, and based on considering the random characteristics and correlation of wind-solar distribution fully,Kantorovich distance reduction and K-means clustering algorithm were used to optimized and reduced the dimension of random scenes, for obtaining typical prediction wind-solar scenes. Combined with the flexibility and energy supply inertia of CSPP, the optimal dispatching model of the VPP contained photothermal was constructed, and the objective function of minimizing the total operation cost of the system was established. Finally, an example was given to verify the superiority of the proposed stochastic optimization method in computational efficiency and prediction accuracy; The objective functions under different operation scenarios were solved to verify that the optimal dispatching model could improve the wind power consumption capacity while reducing the system operation cost effectively.

Key words

virtual power plant / uncertainty / stochastic optimization / scenario generation / optimization scheduling

Cite this article

Download Citations
Li Jiasen, Wang Jin, Yang Meng, Zhao Shuhao, Zhang Xiaoyue. COMBINED HEAT AND POWER ECONOMIC OPTIMAL DISPATCHING IN VIRTUAL POWER PLANT BASED ON STOCHASTIC OPTIMIZATION[J]. Acta Energiae Solaris Sinica. 2023, 44(9): 57-65 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0804

References

[1] 丁茂生, 王洪儒, 王超, 等. 信息物理视角下能源互联网可靠性评估方法综述[J]. 电网技术, 2021, 45(2): 425-436.
DING M S, WANG H R, WANG C, et al.Review of reliability assessments for energy Internet based on cyber physical integration[J]. Power system technology, 2021,45(2): 425-436.
[2] 王卓辉. 我国弃风弃光电量再利用的分析与对策[J]. 中外能源, 2021, 26(5): 23-26.
WANG Z H.Analysis and countermeasures for reuse of wind and photovoltaic power curtailment in China[J]. Sino-global energy, 2021, 26(5): 23-26.
[3] 王春光, 朱国栋. “以热定电”背景下热电联产机组优化分配热负荷的研究[J]. 能源与节能, 2021(3): 63-66.
WANG C G, ZHU G D.Study on optimal distribution of heat load for cogeneration units under background of “determining power by heat”[J]. Energy and energy conservation, 2021(3): 63-66.
[4] 崔杨, 张汇泉, 仲悟之, 等. 考虑需求响应的含光热电站可再生能源高渗透率电力系统多源优化调度[J]. 高电压技术, 2020, 46(5): 1486-1496.
CUI Y, ZHANG H Q, ZHONG W Z, et al.Multi-source optimal scheduling of renewable energy high-permeability power system with CSP plants considering demand response[J]. High voltage engineering, 2020, 46(5): 1486-1496.
[5] 王瑞东, 吴杰康, 蔡志宏, 等. 含广义储能虚拟电厂电-气-热三阶段协同优化调度[J]. 电网技术, 2022, 46(5): 1857-1868.
WANG R D, WU J K, CAI Z H, et al.Three-stage collaborative optimal scheduling of electricity-gas-heat in virtual power plant with generalized energy storage[J]. Power system technology, 2022, 46(5): 1857-1868.
[6] 陈玉敏, 赵冬梅. 含风电的多种形式储能协调调度多目标优化模型[J]. 电测与仪表, 2020, 57(23): 71-78.
CHEN Y M, ZHAO D M.Multi-objective optimization model for multi-form energy storage coordinated scheduling with wind power[J]. Electrical measurement & instrumentation, 2020, 57(23): 71-78.
[7] 李昭昱, 艾芊, 张宇帆, 等. 数据驱动技术在虚拟电厂中的应用综述[J]. 电网技术, 2020, 44(7): 2411-2419.
LI Z Y, AI Q, ZHANG Y F, et al.Application of data-driven technology in virtual power plant[J]. Power system technology, 2020, 44(7): 2411-2419.
[8] 屈富敏, 赵健, 蔡帜, 等. 电动汽车与温控负荷虚拟电厂协同优化控制策略[J]. 电力系统及其自动化学报, 2021, 33(1): 48-56.
QU F M, ZHAO J, CAI Z, et al.Coordinated optimal control strategy for electric vehicle and thermostatically-controlled load aggregators[J]. Proceedings of the CSU-EPSA, 2021, 33(1): 48-56.
[9] 杨宏基, 周明, 武昭原, 等. 含光热电站的电-热能源系统优化运行机制[J]. 电网技术, 2022, 46(1): 175-185.
YANG H J, ZHOU M, WU Z Y, et al.Optimal operation of electro-thermal energy systems with concentrated solar power plant[J]. Power system technology, 2022, 46(1): 175-185.
[10] 彭院院. 考虑光热发电特性的虚拟电厂及热电联供系统优化调度研究[D]. 长沙: 长沙理工大学, 2020.
PENG Y Y.Study on optimal scheduling of virtual power plant and cogeneration system considering photothermal power generation characteristics[D]. Changsha: Changsha University of Science & Technology, 2020.
[11] 廖跃洪, 陈洁, 杨彦飞, 等. 考虑碳捕集电厂综合灵活运行下的含P2G和光热电站虚拟电厂优化调度[J]. 电力建设, 2022, 43(4): 20-27.
LIAO Y H, CHEN J, YANG Y F, et al.Optimal scheduling of virtual power plant with P2G and photo-thermal power plant considering the flexible operation of carbon capture power plants[J]. Electric power construction, 2022, 43(4): 20-27.
[12] 赵玲霞, 王兴贵, 丁颖杰, 等. 考虑分时电价及光热电站参与的多能源虚拟电厂优化调度[J]. 电力建设, 2022, 43(4): 119-129.
ZHAO L X, WANG X G, DING Y J, et al.Optimal dispatch of multi-energy virtual power plant considering time-of-use electricity price and CSP plant[J]. Electric power construction, 2022, 43(4): 119-129.
[13] 孙晶琪, 王愿, 郭晓慧, 等. 考虑环境外部性和风光出力不确定性的虚拟电厂运行优化[J]. 电力系统自动化, 2022, 46(8): 50-59.
SUN J Q, WANG Y, GUO X H, et al.Optimal operation of virtual power plant considering environmental externality and output uncertainty of wind and photovoltaic power[J]. Automation of electric power systems, 2022, 46(8): 50-59.
[14] 董文略, 王群, 杨莉. 含风光水的虚拟电厂与配电公司协调调度模型[J]. 电力系统自动化, 2015, 39(9): 75-81, 207.
DONG W L, WANG Q, YANG L.A coordinated dispatching model for a distribution utility and virtual power plants with wind/photovoltaic/hydro generators[J]. Automation of electric power systems, 2015, 39(9): 75-81, 207.
[15] 房磊. 光热发电参与电力系统调峰策略研究[D]. 兰州: 兰州交通大学, 2018.
FANG L.Study on peak regulation strategy of photothermal power generation participating in power system[D]. Lanzhou: Lanzhou Jiaotong University, 2018.
[16] 王宣元, 刘敦楠, 刘蓁, 等. 泛在电力物联网下虚拟电厂运营机制及关键技术[J]. 电网技术, 2019, 43(9): 3175-3183.
WANG X Y, LIU D N, LIU Z, et al.Operation mechanism and key technologies of virtual power plant under ubiquitous Internet of things[J]. Power system technology, 2019, 43(9): 3175-3183.
[17] 吕蒙. 考虑风光不确定性的微网多时间尺度优化调度[D]. 西安: 西安理工大学, 2021.
LYU M.Multi time scale optimal scheduling of microgrid considering wind and solar uncertainty[D]. Xi’an: Xi’an University of Technology, 2021.
[18] VALVERDE G, SARIC A T, TERZIJA V.Stochastic monitoring of distribution networks including correlated input variables[J]. IEEE transactions on power systems, 2013, 28(1): 246-255.
[19] MAC Q J.Some methods for classification and analysis of multivariate observations[C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 1967.
[20] 梅光银, 龚锦霞, 郑元黎. 考虑风光出力相关性和碳排放限额的多能互补虚拟电厂的调度策略[J]. 电力系统及其自动化学报, 2021, 33(8): 62-69.
MEI G Y, GONG J X, ZHENG Y L.Scheduling strategy for multi-energy complementary virtual power plant considering the correlation between wind and solar output and carbon emission quota[J]. Proceedings of the CSU-EPSA, 2021, 33(8): 62-69.
PDF(2044 KB)

Accesses

Citation

Detail

Sections
Recommended

/