STUDY ON PHOTOVOLTAIC MPPT UNDER LOCAL SHADE BASED ON IMPROVED SLIME MOLD ALGORITHM

Li Hongyan, Wang Lei, An Pingjuan, Yang Chaoxu, Zhao Tianyue, Liu Bao

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (10) : 129-134.

PDF(2063 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2063 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (10) : 129-134. DOI: 10.19912/j.0254-0096.tynxb.2022-0810

STUDY ON PHOTOVOLTAIC MPPT UNDER LOCAL SHADE BASED ON IMPROVED SLIME MOLD ALGORITHM

  • Li Hongyan, Wang Lei, An Pingjuan, Yang Chaoxu, Zhao Tianyue, Liu Bao
Author information +
History +

Abstract

In order to solve the problem that the traditional maximum power point tracking (MPPT) method is easy to fall into local optimality in the case of local shadow illumination of photovoltaic power generation system, a photovoltaic MPPT method of mixed mutant slime mold algorithm combined with arithmetic algorithm (CVSMAAOA) is proposed. This method introduces a chaotic mapping function to initialize slime mold individuals on the basis of slime mold algorithm (SMA), so that the population distribution is more uniform, the gaussian variation is introduced to improve the probability of the algorithm jumping out of the local optimal solution, and the jump of the variation factor helps to accelerate the search process; and the addition and subtraction operators in the arithmetic algorithm (AOA) are introduced to achieve local high-precision exploration. Simulation experiments show that compared with SMA and AOA, the convergence speed of the proposed algorithm under uniform irradiation, static shadow and changing shadow has been significantly improved.

Key words

PV arrays / maximum power point tracking / Gaussian / slime mold algorithm / arithmetic optimization algorithms

Cite this article

Download Citations
Li Hongyan, Wang Lei, An Pingjuan, Yang Chaoxu, Zhao Tianyue, Liu Bao. STUDY ON PHOTOVOLTAIC MPPT UNDER LOCAL SHADE BASED ON IMPROVED SLIME MOLD ALGORITHM[J]. Acta Energiae Solaris Sinica. 2023, 44(10): 129-134 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0810

References

[1] 赖昌伟, 黎静华, 陈博, 等. 光伏发电出力预测技术研究综述[J]. 电工技术学报, 2019, 34(6): 1201-1217.
LAI C W, LI J H, CHEN B, et al.Review of photovoltaic power output prediction technology[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1201-1217.
[2] 肖文波, 余晓鹏, 张华明, 等. 遮荫下光伏发电数学模型的对比研究[J]. 电测与仪表, 2019, 56(10): 56-61.
XIAO W B, YU X P, ZHANG H M, et al.Comparative study of photovoltaic power generation math model under partial shading conditions[J]. Electrical measurement & instrumentation, 2019, 56(10): 56-61.
[3] 花赟昊, 朱武, 靳一奇, 等. 基于自适应变异粒子群算法的光伏MPPT控制研究[J]. 太阳能学报, 2022, 43(4): 219-225.
HUA Y H, ZHU W, JIN Y Q, et al.Research on photovoltaic MPPT control based on adaptive mutation particle swarm optimization algorithm[J]. Acta energiae solaris sinica, 2022, 43(4): 219-225.
[4] 叶国敏, 肖文波, 章文龙. 粒子群组合算法跟踪局部遮荫下光伏GMPPT研究[J]. 控制工程, 2022, 29(5): 910-917.
YE G M, XIAO W B, ZHANG W L.Research on PSO combined algorithm for tracking photovoltaic GMPPT under partial shading[J]. Control engineering of China, 2022, 29(5): 910-917.
[5] 刘春娟, 郑丽君, 孙赟赟, 等. 基于改进型细菌觅食算法的MPPT[J]. 太阳能学报, 2021, 42(9): 83-89.
LIU C J, ZHENG L J, SUN Y Y, et al.Maximum power point tracking strategy based on improved bacterial foraging algorithm[J]. Acta energiae solaris sinica, 2021, 42(9): 83-89.
[6] 石季英, 张登雨, 薛飞, 等. 基于改进灰狼优化-黄金分割混合算法的光伏阵列MPPT方法[J]. 电力系统及其自动化学报, 2019, 31(5): 21-26.
SHI J Y, ZHANG D Y, XUE F, et al.Maximum power point tracking method for photovoltaic array based on modified hybrid method of grey wolf optimization and golden-section optimization[J]. Proceedings of the CSU-EPSA, 2019, 31(5): 21-26.
[7] 薛飞, 马鑫, 田蓓, 等. 基于改进蜻蜓算法的光伏全局最大功率追踪[J]. 中国电力, 2022, 55(2): 131-137.
XUE F, MA X, TIAN B, et al.Photovoltaic global maximum power tracking based on improved dragonfly algorithm[J]. Electric power, 2022, 55(2): 131-137.
[8] 刘宜罡, 邹应全, 张晓强, 等. 基于差分进化的光伏MPPT算法改进[J]. 太阳能学报, 2020, 41(6): 264-271.
LIU Y G, ZOU Y Q, ZHANG X Q, et al.An improved photovoltaic MPPT algorithm based on differential evolution algorithm[J]. Acta energiae solaris sinica, 2020, 41(6): 264-271.
[9] 张晓强, 刘宜罡, 邹应全, 等. 基于自适应神经网络控制的光伏MPPT算法改进[J]. 太阳能学报, 2019, 40(11): 3095-3102.
ZHANG X Q, LIU Y G, ZOU Y Q, et al.An enhanced photovoltaic MPPT approach based on adaptive neural network control[J]. Acta energiae solaris sinica, 2019, 40(11): 3095-3102.
[10] LI S M, CHEN H L, WANG M J, et al.Slime mould algorithm: a new ethod for stochastic optimization[J]. Future generation computer systems, 2020, 111: 300-323.
[11] 贾鹤鸣, 刘宇翔, 刘庆鑫, 等. 融合随机反向学习的黏菌与算术混合优化算法[J]. 计算机科学与探索, 2022, 16(5): 1182-1192.
JIA H M, LIU Y X, LIU Q X, et al.Hybrid algorithm of slime mould algorithm and arithmetic optimization algorithm based on random opposition-based learning[J]. Journal of frontiers of computer science and technology, 2022, 16(5): 1182-1192.
[12] 刘宇凇, 刘升. 无迹西格玛点引导的拟反向黏菌算法及其工程应用[J]. 计算机应用研究, 2022, 39(9): 2709-2716.
LIU Y S, LIU S.Unscented sigma point guided quasi-opposite slime mould algorithm and its application in engineering problem[J]. Application research of computers, 2022, 39(9): 2709-2716.
[13] 肖亚宁, 孙雪, 李三平, 等. 基于混沌精英黏菌算法的无刷直流电机转速控制[J]. 科学技术与工程, 2021, 21(28): 12130-12138.
XIAO Y N, SUN X, LI S P, et al.Speed control of brushless direct current motor based on chaotic elite slime mould algorithm[J]. Science technology and engineering, 2021, 21(28): 12130-12138.
[14] 李志军, 张奕楠, 王丽娟, 等. 基于改进量子粒子群算法的光伏多峰MPPT研究[J]. 太阳能学报, 2021, 42(5): 221-229.
LI Z J, ZHANG Y N, WANG L J, et al.Study of photovoltaic multimodal maximum power point tracking based on improved quantum particle swarm optmization[J]. Acta energiae solaris sinica, 2021, 42(5): 221-229.
[15] ABUALIGAH L,DIABAT A, MIRJALILI S, et al.The arithmetic optimization algorithm[J]. Computer methods in applied mechanics and engineering, 2021, 376: 113609.
[16] 魏昕, 冯锋. 基于高斯-柯西变异的帝国竞争算法优化[J]. 计算机科学, 2021, 48(S2): 142-146.
WEI X, FENG F.Optimization of empire competition algorithm based on Gauss-Cauchy mutation[J]. Computer science, 2021, 48(S2): 142-146.
PDF(2063 KB)

Accesses

Citation

Detail

Sections
Recommended

/