RESEARCH ON DYNAMIC STALL CHARACTERISTICS OF AIRFOIL BASED ON STEADY SUCTION

Huang Haoda, Liu Qingsong, Ma Lu, Miao Weipao, Li Chun, Wang Peilin

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (10) : 275-283.

PDF(4296 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(4296 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (10) : 275-283. DOI: 10.19912/j.0254-0096.tynxb.2022-0825

RESEARCH ON DYNAMIC STALL CHARACTERISTICS OF AIRFOIL BASED ON STEADY SUCTION

  • Huang Haoda1, Liu Qingsong1, Ma Lu2, Miao Weipao1, Li Chun1,3, Wang Peilin1
Author information +
History +

Abstract

Large-scale vortex shedding is prone to occur on the suction surface during dynamic stall process of the airfoil, resulting in a sharp decline in aerodynamic performance due to stall. Numerical simulation of the S809 airfoil is carried out by using sliding mesh technology and SST k-ω turbulence model, and the effect of the leading-edge steady suction is studied on dynamic stall flow control and aerodynamic characteristics. The results show that the suction effectively suppresses the dynamic stall vortex shedding, increases the pressure discrepancy on both sides of the suction/pressure surface and improves the aerodynamic performance. The maximum average lift coefficient can be obtained by steady suction at 0.05c from the leading-edge of the airfoil, while there is sustained decrease of the corrected drag coefficient as the suction position closing to the leading-edge. When the suction momentum coefficient is 0.025 and the suction distance from the leading-edge is 0.15c, the corrected lift-drag ratio is largest in the studied angle of attack compared with the original airfoil. Moreover, suction energy consumption is positively correlated with the suction momentum coefficient, increasing with the decrease of the suction gap distance from the leading-edge.

Key words

wind turbines / flow control / lift drag ratio / angle of attack / S809 airfoil / dynamic stall / steady suction

Cite this article

Download Citations
Huang Haoda, Liu Qingsong, Ma Lu, Miao Weipao, Li Chun, Wang Peilin. RESEARCH ON DYNAMIC STALL CHARACTERISTICS OF AIRFOIL BASED ON STEADY SUCTION[J]. Acta Energiae Solaris Sinica. 2023, 44(10): 275-283 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0825

References

[1] SUN J J, SUN X J, HUANG D G.Aerodynamics of vertical-axis wind turbine with boundary layer suction - effects of suction momentum[J]. Energy, 2020, 209: 118446.
[2] 胡燕平, 戴巨川, 刘德顺. 大型风力机叶片研究现状与发展趋势[J]. 机械工程学报, 2013, 49(20): 140-151.
HU Y P, DAI J C, LIU D S.Research status and development trend on large scale wind turbine blades[J]. Journal of mechanical engineering, 2013, 49(20): 140-151.
[3] HIRSCHEL E H, RIZZI A, BREITSAMTER C, et al.Separated and vortical flow in aircraft wing aerodynamics[M]. Berlin: Springer Berlin Heidelberg, 2021.
[4] MCCROSKEY W J.The phenomenon of dynamic stall[J]. Phenomenon of dynamic stall, 1981: 1-32.
[5] GUPTA R, ANSELL P J.Unsteady flow physics of airfoil dynamic stall[C]//55th AIAA Aerospace Science Meeting. Grapevine, TX,USA, 2017.
[6] 张立, 缪维跑, 李春, 等. 基于气动弹性剪裁的大型风力机弯扭耦合叶片力学性能分析[J]. 动力工程学报, 2021, 41(8): 674-683.
ZHANG L, MIAO W P, LI C, et al.Mechanical performance analysis of large wind turbine bend-twist coupling blade based on aeroelastic tailoring[J]. Journal of Chinese Society of Power Engineering, 2021, 41(8): 674-683.
[7] XU H Y, XING S L, YE Z Y.Numerical study of the S809 airfoil aerodynamic performance using a co-flow jet active control concept[J]. Journal of renewable and sustainable energy, 2015, 7(2): 033127-226.
[8] EL-HAK M G. Flow control: passive, active, and reactive flow management[M]. Cambridge: Cambridge University Press, 2000.
[9] 郝文星, 李春, 刘青松, 等. 风力机叶片气动降载与流动分离控制技术综述[J]. 热能动力工程, 2019, 34(9): 1-13.
HAO W X, LI C, LIU Q S, et al.Review of aerodynamic load reduction and flow separation control technology for wind turbine blades[J]. Journal of engineering for thermal energy and power, 2019, 34(9): 1-13.
[10] 魏彪, 梁华, 韩孟虎, 等. 等离子体气动激励抑制机翼失速分离的实验[J]. 航空动力学报, 2015, 30(8): 1862-1868.
WEI B, LIANG H, HAN M H, et al.Experiment on wing stall separation suppression by plasma aerodynamic actuation[J]. Journal of aerospace power, 2015, 30(8): 1862-1868.
[11] HASSAN A A.Applications of zero-net-mass jets for enhanced rotorcraft aerodynamic performance[J]. Journal of aircraft, 2001, 38(3): 478-485.
[12] 罗帅, 缪维跑, 刘青松, 等. 基于吹吸结合射流的S809翼型增升减阻研究[J]. 动力工程学报, 2021, 41(10): 883-891.
LUO S, MIAO W P, LIU Q S, et al.Research on lift increase and drag reduction of S809 airfoil based on suction-blow combined jet[J]. Journal of Chinese Society of Power Engineering, 2021, 41(10): 883-891.
[13] 马海. 一种主动流动控制技术应用于三维机翼减阻的数值模拟[D]. 南京: 南京航空航天大学, 2009.
MA H.A numerical simulation of reducing drag of a three-dimensional wing by using an active flow control technique[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009.
[14] ZHAO D J, WANG Y K, CAO W W, et al.Optimization of suction control on an airfoil using multi-island genetic algorithm[J]. Procedia engineering, 2015, 99: 696-702.
[15] 段会申, 刘沛清, 何雨薇, 等. 二维翼型微吸吹气减阻控制新技术数值研究[J]. 航空学报, 2009, 30(7): 1219-1226.
DUAN H S, LIU P Q, HE Y W, et al.Numerical investigation of drag-reduction control by micro-suction-blowing on airfoil[J]. Acta aeronautica et astronautica sinica, 2009, 30(7): 1219-1226.
[16] ZHI H L, ZHU Z H, LU Y J, et al.Aerodynamic performance enhancement of co-flow jet airfoil with simple high-lift device[J]. Chinese journal of aeronautics, 2021, 34(9): 143-155.
[17] ARUNRAJ R, LOGESH K, BALAJI V, et al.Experimental investigation of lift enhancement by suction-assisted delayed separation of the boundary layer on NACA0012 airfoil[J]. International journal of ambient energy, 2019, 40(3): 243-247.
[18] FATAHIAN E, NICHKOOHI A L, SALARIAN H, et al.Effects of the hinge position and suction on flow separation and aerodynamic performance of the NACA0012 airfoil[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(2): 1-14.
[19] ALREFAI M, ACHARYA M.Controlled leading-edge suction for management of unsteady separation over pitching airfoils[J]. AIAA journal, 1996, 34(11): 2327-2336.
[20] CHEN C M, SEELE R, WYGNANSKI I.Flow control on a thick airfoil using suction compared to blowing[J]. AIAA journal, 2013, 51(6): 1462-1472.
[21] WANG Z, GURSUL I.Lift enhancement of a flat-plate airfoil by steady suction[J]. AIAA journal, 2017, 55(4): 1355-1372.
[22] KINDLER K, MULLENERS K, SCHNEIDER O, et al.Dynamic stall on a fully equipped helicopter model[C]//36th European Rotorcraft Forum. Germany, 2010.
[23] GANESH N, ARUNVINTHAN S, NADARAJA S, et al.Effect of surface blowing on aerodynamic characteristics of tubercled straight wing[J]. Chinese journal of aeronautics, 2019, 32(5): 1111-1120.
[24] BEKHTI A, MAIZI M, GUERRI O, et al, Numerical analysis of dynamic stall on wind turbine airfoils[C]//2018 International Conference on Wind Energy and Applications in Algeria (ICWEAA), Algeria: Centre de Développement des Energies Renouvelables (CDER), 2018.
[25] GUILLAUD N, BALARAC G, GONCALVÈS E. Large eddy simulations on a pitching airfoil: analysis of the reduced frequency influence[J]. Computers and fluids, 2018, 161: 1-13.
[26] RAMSAY R, HOFFMAN M J, GREGOREK G M.Effects of grit roughness and pitch oscillations on the S809 airfoil[R]. USA: Office of scientific and technical information technical reports, 1995.
[27] 刘学强. 基于混合网格和多重网格上的N-S方程求解及应用研究[D]. 南京: 南京航空航天大学, 2002.
LIU X Q.The research of N-S equations’solution using hybrid grids and multi-grid methods and it’s applications[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2002.
[28] YA S K, EISENTRAGER S, SONG C M, et al.An open-source ABAQUS implementation of the scaled boundary finite element method to study interfacial problems using polyhedral meshes[J]. Computer methods in applied mechanics and engineering, 2021, 381: 113766.
[29] WANG W, CAO S L, DANG N N, et al.Study on dynamics of vortices in dynamic stall of a pitching airfoil using Lagrangian coherent structures[J]. Aerospace science and technology, 2021, 113: 106706.
[30] GENG F Y, KALKMAN I, SUIKER A S J, et al. Sensitivity analysis of airfoil aerodynamics during pitching motion at a Reynolds number of 1.35×105[J]. Journal of wind engineering and industrial aerodynamics, 2018, 183: 315-332.
[31] LEFEBVRE A, DANO B, FRONZO M D, et al.Performance of a co-flow jet airfoil with variation of Mach number[C]//AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Grapevine, TX, USA, 2013.
[32] XU K W, ZHA G G.Investigation of coflow jet active flow control for wind turbine airfoil[C]//Proceedings of the AIAA Aviation 2020 Forum, 2020: 2020-2942.
PDF(4296 KB)

Accesses

Citation

Detail

Sections
Recommended

/