FAST DETECTION METHOD FOR NORMAL ERROR OF PARABOLIC DISH CONCENTRATOR BASED ON DEFLECTOMETRY

Liu Fanmao, Zhang Yuanyuan, Liao Cancan, Mo Han

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (8) : 367-378.

PDF(3120 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3120 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (8) : 367-378. DOI: 10.19912/j.0254-0096.tynxb.2022-0831

FAST DETECTION METHOD FOR NORMAL ERROR OF PARABOLIC DISH CONCENTRATOR BASED ON DEFLECTOMETRY

  • Liu Fanmao, Zhang Yuanyuan, Liao Cancan, Mo Han
Author information +
History +

Abstract

To achieve fast detection for normal error of the parabolic mirror of the dish concentrator, for the lack of depth information in the monocular deflectometry method, an iterative fitting algorithm is proposed to correct the conversion error between the mirror coordinate system and the camera coordinate system by fitting the calculated quadratic surface coefficients to realize the fast positioning and normal error calculation of the parabolic mirror of the symmetric dish concentrator. The experimental platform is built and five parabolic mirror measurement experiments with different positions and orientations are conducted to obtain the actual normal direction data of the measured parabolic mirror. Compared with the standard normal direction of the design surface of parabolic mirror, the average error is 7.3591 mrad. Furthermore, the normal error measured in the five measurements is similar, and its overall standard deviation is 5.0278 mrad; The normal error measured by this method is verified to be less than 20 mrad through compared with the reference data of parabolic mirror surface shape. Finally, the experimental results show that the method is feasible, fast and stable.

Key words

solar thermal power generation / concentrators / dish / error detection / phase shift / deflectometry

Cite this article

Download Citations
Liu Fanmao, Zhang Yuanyuan, Liao Cancan, Mo Han. FAST DETECTION METHOD FOR NORMAL ERROR OF PARABOLIC DISH CONCENTRATOR BASED ON DEFLECTOMETRY[J]. Acta Energiae Solaris Sinica. 2023, 44(8): 367-378 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0831

References

[1] PALACIOS A, BARRENECHE C, NAVARRO M E, et al.Thermal energy storage technologies for concentrated solar power: a review from a materials perspective[J]. Renewable energy, 2020, 156: 1244-1265.
[2] BP statistical review of world energy2021[EB/OL](2021). https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf.
[3] 翁楚彬, 周雄冬, 徐梦珍. 西藏可再生能源开发适宜度评价[J]. 太阳能学报, 2023, 44(1): 475-484.
WENG C B, ZHOU X D, XU M Z.Research on suitability of renewable energy exploitation in Tibet[J]. Acta energiae solaris sinica, 2023, 44(1): 475-484.
[4] ANDRAKA C E, YELLOWHAIR J, IVERSON B D.A parametric study of the impact of various error contributions on the flux distribution of a solar dish concentrator[C]//Energy Sustainability, Phoenix, Arizona, USA: ASMEDC, 2010: 565-580.
[5] YDRISSI M, GHENNIOUI H, BENNOUNA E G, et al.Techno-economic study of the impact of mirror slope errors on the overall optical and thermal efficiencies- case study: solar parabolic trough concentrator evaluation under semi-arid climate[J]. Renewable energy, 2020, 161: 293-308.
[6] SHORTIS M, JOHNSTON G.Photogrammetry: an available surface characterization tool for solar concentrators, part Ⅱ: assessment of surfaces[J]. Journal of solar energy engineering, 1997, 119(4): 286-291.
[7] POTTLER K, LÜPFERT E, JOHNSTON G H G, et al. Photogrammetry: a powerful tool for geometric analysis of solar concentrators and their components[J]. Journal of solar energy engineering, 2005, 127(1): 94-101.
[8] BURGESS G, SHORTIS M, KEARTON A, et al.Photogrammetry for dish concentrator construction[C]//Solar 09, the 47th Annual Conference of Australian & New Zealand Solar Energy Society, Townsville, Queensland, Australia: James Cook University, 2009: 1-10.
[9] KING P, SANSOM C, COMLEY P.Photogrammetry for concentrating solar collector form measurement, validated using a coordinate measuring machine[J]. Sustainability, 2019, 12(1): 196.
[10] YDRISSI M, GHENNIOUI H, ABDI F, et al.An optical qualification technique for solar parabolic trough concentrators using the distant observer method and image processing algorithms[C]//2019 International Conference on Wireless Networks and Mobile Communications(WINCOM), Fez, Morocco, IEEE, 2019: 1-6.
[11] YDRISSI M, GHENNIOUI H, BENNOUNA E G, et al.Geometric, optical and thermal analysis for solar parabolic trough concentrator efficiency improvement using the photogrammetry technique under semi-arid climate[J]. Energy procedia, 2019, 157: 1050-1060.
[12] 尚万祺, 张文喜, 伍洲, 等. 全视场外差干涉三维测量系统[J]. 光学精密工程, 2019, 27(10): 2097-2104.
SHANG W Q, ZHANG W X, WU Z, et al.Three-dimensional measurement system based on full-field heterodyne interferometry[J]. Optics and precision engineering, 2019, 27(10): 2097-2104.
[13] JORGENSEN G, WENDELIN T, CARASSO M.Determination of accuracy of measurements by NREL’s scanning hartmann optical test instrument[R]. National Renewable Energy Lab. Golden, CO(United States), 1991.
[14] STEFFEN B J, ANDRAKA C E, DIVER R B.Development and characterization of a color 2f alignment method for the advanced dish development system[C]//International Solar Energy Conference,Kohala Coast, Hawaii, USA: ASMEDC, 2003: 657-663.
[15] LI S, XU J S, LOU J R, et al.Mirror surface assessment in solar power applications by 2-D coded light[J]. IEEE transactions on instrumentation and measurement, 2020, 69(6): 3555-3565.
[16] YDRISSI M, GHENNIOUI H, BENNOUNA E G, et al.A review of optical errors and available applications of deflectometry technique in solar thermal power applications[J]. Renewable and sustainable energy reviews, 2019, 116: 109438.
[17] 王月敏, 张宗华, 高楠. 基于全场条纹反射的镜面物体三维面形测量综述[J]. 光学精密工程, 2018, 26(5): 1014-1027.
WANG Y M, ZHANG Z H, GAO N.Review on three-dimensional surface measurements of specular objects based on full-field fringe reflection[J]. Optics and precision engineering, 2018, 26(5): 1014-1027.
[18] 雷经发, 陈志强, 张淼, 等. 双频投影条纹相位展开方法的改进[J]. 光学精密工程, 2021, 29(6): 1337-1345.
LEI J F, CHEN Z Q, ZHANG M, et al.Improvement of phase unwrapping method for dual-frequency projection fringe[J]. Optics and precision engineering, 2021, 29(6): 1337-1345.
[19] KNAUER M C, KAMINSKI J, HAUSLER G.Phase measuring deflectometry: a new approach to measure specular free-form surfaces[C]//Optical Metrology in Production Engineering, Strasbourg, France, Photonics Europe, 2004: 366-376.
[20] ANDRAKA C E, SADLON S, MYER B, et al.Rapid reflective facet characterization using fringe reflection techniques[J]. Journal of solar energy engineering, 2014, 136(1): 011002.
[21] 肖君, 魏秀东, 卢振武, 等. 基于偏折原理的太阳能槽式聚光器面形快速检测方法[J]. 中国激光, 2013, 40(12): 191-197.
XIAO J, WEI X D, LU Z W, et al.A fast surface shape measurement method for the parabolic trough solar concentrator based on deflectometry[J]. Chinese journal of lasers, 2013, 40(12): 191-197.
[22] JONES S A, GRUETZNER J K, HOUSER R M, et al.VSHOT measurement uncertainty and experimental sensitivity study[C]//IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No. 97CH6203), Honolulu, HI, USA: IEEE, 2022: 1877-1882.
[23] OpenCV: camera calibration and 3D reconstruction[EB/OL](2021). https://docs.opencv.org/4.5.4/d9/d0c/group_calib3d.html.
[24] 付生鹏, 赵吉宾, 夏仁波, 等. 基于平面镜的相机-显示器快速标定方法[J]. 仪器仪表学报, 2013, 34(12): 2770-2776.
FU S P, ZHAO J B, XIA R B, et al.A mirror-based fast camera-screen calibration method[J]. Chinese journal of scientific instrument, 2013, 34(12): 2770-2776.
PDF(3120 KB)

Accesses

Citation

Detail

Sections
Recommended

/