OPTIMAL DISPATCH OF ELECTRICITY-NATURAL GAS INTERCONNECTION SYSTEM CONSIDERING SOURCE- LOAD UNCERTAINTY AND VIRTUAL POWER PLANT WITH CARBON CAPTURE

Chen Jiming, Xu Qian, Li Yong, Yu Xinwei, Chen Wencong

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (10) : 9-10.

PDF(1729 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1729 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (10) : 9-10. DOI: 10.19912/j.0254-0096.tynxb.2022-0840

OPTIMAL DISPATCH OF ELECTRICITY-NATURAL GAS INTERCONNECTION SYSTEM CONSIDERING SOURCE- LOAD UNCERTAINTY AND VIRTUAL POWER PLANT WITH CARBON CAPTURE

  • Chen Jiming1, Xu Qian1, Li Yong2, Yu Xinwei1, Chen Wencong1
Author information +
History +

Abstract

On the basis of the electricity-natural gas interconnection system, the carbon capture system and the carbon storage system are added, and the CCS-P2G-WT-GT combined operation model of virtual power plant is established, and the advantages of the combined operation mode is analyzed. Secondly, the influence of wind power and load uncertainty is considered. By introducing fuzzy parameters, a fuzzy opportunity constraint model is stablished to analyze the influence of uncertainty on carbon capture capacity. Finally, based on the improved IEEE-39 power system and the 20-node natural gas calculation example system, the wind power consumption and the carbon emissions reduction of the proposed combined operation model of carbon capture virtual power plant under the condition of considering the uncertainties of wind power and load are verified by the GUROBI solver.

Key words

uncertainty analysis / carbon capture / virtual power plant / integrated energy system / low-carbon economic operation / fuzzy chance constraint

Cite this article

Download Citations
Chen Jiming, Xu Qian, Li Yong, Yu Xinwei, Chen Wencong. OPTIMAL DISPATCH OF ELECTRICITY-NATURAL GAS INTERCONNECTION SYSTEM CONSIDERING SOURCE- LOAD UNCERTAINTY AND VIRTUAL POWER PLANT WITH CARBON CAPTURE[J]. Acta Energiae Solaris Sinica. 2023, 44(10): 9-10 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0840

References

[1] UNITE NATIONS. Paris Agreement[EB/OL].2015, https://www.docin.com/p-1752392198.html.
[2] 文福拴, 鲁刚, 黄杰. 面向碳达峰、碳中和的综合能源系统[J]. 全球能源互联网, 2022, 5(2): 116-117.
WEN F Q, LU G, HUANG J.Integrated energy system towards carbon peak and neutrality targets[J]. Journal of global energy interconnection, 2022, 5(2): 116-117.
[3] 周孝信, 曾嵘, 高峰, 等. 能源互联网的发展现状与展望[J]. 中国科学: 信息科学, 2017, 47(2): 149-170.
ZHOU X X, ZENG R, GAO F, et al.Development status and prospect of energy internet[J]. Science in China: information science, 2017, 47(2): 149-170.
[4] 康重庆, 季震, 陈启鑫. 碳捕集电厂灵活运行方法评述与展望[J]. 电力系统自动化, 2012, 36(6): 1-10.
KANG C Q, JI Z, CHEN Q X.Comment and prospect of flexible operation method of carbon capture power plant[J]. Automation of electric power systems, 2012, 36(6): 1-10.
[5] 刘吉臻, 李明扬, 房方, 等. 虚拟发电厂研究综述[J]. 中国电机工程学报, 2014, 34(29): 5103-5111.
LIU J Z, LI M Y, FANG F, et al.Review on virtual power plants[J]. Proceedings of the CSEE, 2014, 34(29): 5103-5111.
[6] HUANG C X, YUE D, XIE J, et al.Economic dispatch of power systems with virtual power plant based interval optimization method[J]. CSEE journal of power and energy systems, 2016, 2(1): 74-80.
[7] GIUNTOLI M, POLI D.Optimized thermal and electrical scheduling of a large scale virtual power plant in the presence of energy storages[J]. IEEE transactions on smart grid, 2013, 4(2): 942-955.
[8] JI Z, KANG C Q, CHEN Q X, et al.Low-carbon power system dispatch incorporating carbon capture power plants[J]. IEEE transactions on power systems, 2013, 28(4): 4615-4623.
[9] HE L C, LU Z G, ZHANG J F, et al.Low-carbon economic dispatch for electricity and natural gas systems considering carbon capture systems and power-to-gas[J]. Applied energy, 2018, 224: 357-370.
[10] 田丰, 贾燕冰, 任海泉, 等. 考虑碳捕集系统的综合能源系统“源-荷”低碳经济调度[J]. 电网技术, 2020, 44(9): 3346-3355.
TIAN F, JIA Y B, REN H Q, et al.“Source-load” low-carbon economic dispatch of integrated energy system considering carbon capture system[J]. Power system technology, 2020, 44(9): 3346-3355.
[11] TAN C X, WANG J, GENG S P, et al.Three-level market optimization model of virtual power plant with carbon capture equipment considering copula-CVaR theory[J]. Energy, 2021, 237: 121620.
[12] 周任军, 孙洪, 唐夏菲, 等. 双碳量约束下风电-碳捕集虚拟电厂低碳经济调度[J]. 中国电机工程学报, 2018, 38(6): 1675-1683.
ZHOU R J, SUN H, TANG X F, et al.Low-carbon economic dispatch based on virtual power plant made up of carbon capture unit and wind power under double carbon constrain[J]. Proceedings of the CSEE, 2018, 38(6): 1675-1683.
[13] 孙惠娟, 蒙锦辉, 彭春华. 风-光-水-碳捕集多区域虚拟电厂协调优化调度[J]. 电网技术, 2019, 43(11): 4040-4051.
SUN H J, MENG J H, PENG C H.Coordinated optimization scheduling of multi-region virtual power plant with wind-power/photovoltaic/hydropower/carbon-capture units[J]. Power system technology, 2019, 43(11): 4040-4051.
[14] 崔杨, 曾鹏, 惠鑫欣, 等. 考虑碳捕集电厂综合灵活运行方式的低碳经济调度[J]. 电网技术, 2021, 45(5): 1877-1886.
CUI Y, ZENG P, HUI X X, et al.Low-carbon economic dispatch considering the integrated flexible operation mode of carbon capture power plant[J]. Power system technology, 2021, 45(5): 1877-1886.
[15] 崔杨, 邓贵波, 曾鹏, 等. 计及碳捕集电厂低碳特性的含风电电力系统源-荷多时间尺度调度方法[J]. 中国电机工程学报, 2022, 42(16): 5869-5886, 6163.
CUI Y, DENG G B, ZENG P, et al.Multi-time scale source-load dispatch method of power system with wind power considering low-carbon characteristics of carbon capture power plant[J]. Proceedings of the CSEE, 2022, 42(16): 5869-5886, 6163.
[16] 罗平, 闫文乐, 王严, 等. 考虑CCUS的电-气-热综合能源系统鲁棒优化调度[J]. 高电压技术, 2022, 48(6): 2077-2087.
LUO P, YAN W L, WANG Y, et al.Robust optimal dispatch of electricity-gas-heat integrated energy system considering carbon capture, utilization and storage[J]. High voltage engineering, 2022, 48(6): 2077-2087.
[17] 崔杨, 周慧娟, 仲悟之, 等. 考虑源荷两侧不确定性的含风电电力系统低碳调度[J]. 电力自动化设备, 2020, 40(11): 85-93.
CUI Y, ZHOU H J, ZHONG W Z, et al.Low-carbon scheduling of power system with wind power considering uncertainty of both source and load sides[J]. Electric power automation equipment, 2020, 40(11): 85-93.
[18] 赵冬梅, 王浩翔, 陶然. 计及风电-负荷不确定性的风-火-核-碳捕集多源协调优化调度[J]. 电工技术学报, 2022, 37(3): 707-718.
ZHAO D M, WANG H X, TAO R.A Multi-source coordinated optimal scheduling model considering wind-load uncertainty[J]. Transactions of China Electrotechnical Society, 2022, 37(3): 707-718.
[19] BUNGER U, LANDINGER H, PSCHORR-SCHOBERER E, et al.Power-to-gas (PtG) in transport status quo and perspectives for development[R]. Report to the Federal Ministry of Transport and Digital Infrastructure (BMVI), Germany, 2014.
[20] CHEN Z, ZHANG Y, JI T, et al.Coordinated optimal dispatch and market equilibrium of integrated electric power and natural gas networks with P2G embedded[J]. Journal of modern power systems and clean energy, 2018, 6(3): 495-508.
[21] 张伊宁, 何宇斌, 晏鸣宇, 等. 计及需求响应与动态气潮流的电-气综合能源系统优化调度[J]. 电力系统自动化, 2018, 42(20): 1-8.
ZHANG Y N, HE Y B, YAN M Y, et al.Optimal dispatch of integrated electricity-natural gas system considering demand response and dynamic natural gas flow[J]. Automation of electric power system, 2018, 42(20): 1-8.
[22] 张义斌. 天然气-电力混合系统分析方法研究[D]. 北京: 中国电力科学研究院, 2005.
ZHANG Y B.Study on the methods for analyzing combined gas and eleetrieity networks[D]. Beijing: China Electric Power Research Institute, 2005.
[23] 刘宝碇, 彭锦. 不确定理论教程[M]. 北京: 清华大学出版社有限公司, 2005: 74-126.
LIU B D, PENG J.Uncertainty theory[M]. Beijing: Tsinghua University Press, 2005: 74-126
[24] 熊虎, 向铁元, 陈红坤, 等. 含大规模间歇式电源的模糊机会约束机组组合研究[J]. 中国电机工程学报, 2013, 33(13): 36-44.
XIONG H, XIANG T Y, CHEN H K, et al.Research of fuzzy chance constrained unit commitment containing large-scale intermittent power[J]. Proceedings of the CSEE, 2013, 33(13): 36-44.
[25] 邓红卫. 计及碳排放成本的电-气-热综合能源系统节点能价计算方法研究[D]. 吉林: 东北电力大学, 2019.
DENG H W. evaluating nodal energy price of carbon emission-embedded electricity-gas-heat integrated energy system[D]. Jilin: Northeast Electric Power University, 2019.
[26] CHEN J M, NING K, XIN X Z, et al.Day-ahead optimal scheduling of an integrated energy system based on a piecewise self-adaptive particle swarm optimization algorithm[J]. Energies, 2022, 15(3): 690.
PDF(1729 KB)

Accesses

Citation

Detail

Sections
Recommended

/