DYNAMIC RESPONSE ANALYSIS OF MOORING STRUCTURE FOR DEEP-WATER FLOATING PHOTOVOLTAIC PLATFORM

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (10) : 156-164.

PDF(2768 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2768 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (10) : 156-164. DOI: 10.19912/j.0254-0096.tynxb.2022-0857

DYNAMIC RESPONSE ANALYSIS OF MOORING STRUCTURE FOR DEEP-WATER FLOATING PHOTOVOLTAIC PLATFORM

  • Xu Pu1, Li Siliang1, Song Qiming2, Lai Fuliang2
Author information +
History +

Abstract

Based on the characteristics of the deep-water floating photovoltaic platform in the practical engineering, a arrangement scheme plan is proposed, and a numerical calculation model of the photovoltaic platform and the mooring structure is established, and the accuracy of the calculation model is verified by comparison. According to the measured marine environment wind, wave, and current conditions, the full-time dynamic coupling calculation and analysis of the mooring structure for the floating photovoltaic platform are carried out to explore the motion response of the photovoltaic platform at six degrees of freedom and the tension response of the mooring structure under the extreme sea conditions in the 0°, 45°, and 90° directions. The results show that the motions of the six degrees of freedom of the photovoltaic platform all respond the most when the maximum wave height occurs, and the surge motion in the 0° direction and the roll motion in the 90° direction are the most significant; in the directions of 0°, 45°, and 90°, the mooring line tensions at the head sea side are the largest, and the tension responses of the mooring lines at the back swell are relatively small; when the tension responses of the mooring lines reach the maximum, the mooring lines in the direction of 0°, 45°, and 90° are taut, the other mooring lines show the relaxation catenary linear, which preferably reflects the tension response of the mooring lines.

Key words

floating photovoltaic platform / mooring structure / deep-water / dynamic response / effect of wind-ware-current / coupling numerical model

Cite this article

Download Citations
DYNAMIC RESPONSE ANALYSIS OF MOORING STRUCTURE FOR DEEP-WATER FLOATING PHOTOVOLTAIC PLATFORM[J]. Acta Energiae Solaris Sinica. 2023, 44(10): 156-164 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0857

References

[1] POPA B, VUTA L I, DUMITRAN G E, et al.FPV for sustainable electricity generation in a large European city[J]. Sustainability, 2021, 14(1): 349.
[2] CHOI Y K, CHOI W S, LEE J H.Empirical research on the efficiency of floating PV systems[J]. Science of advanced materials, 2016, 8(3): 681-685.
[3] SAHU A, YADAV N, SUDHAKAR K.Floating photovoltaic power plant: a review[J]. Renewable and sustainable energy reviews, 2016, 66: 815-824.
[4] DASH P, GUPTA N.Effect of temperature on power output from different commercially available photovoltaic modules[J]. International journal of engineering research and applications, 2015, 5(1): 148-151.
[5] TRAPANI K, REDÓN SANTAFÉ M. A review of floating photovoltaic installations: 2007-2013[J]. Progress in photovoltaics: research and applications, 2015, 23(4): 524-532.
[6] RANJBARAN P, YOUSEFI H, GHAREHPETIAN G B, et al.A review on floating photovoltaic (FPV) power generation units[J]. Renewable and sustainable energy reviews, 2019, 110: 332-347.
[7] 吴继亮, 梁甜, 糜文杰, 等. 水上漂浮式光伏电站的发展及应用前景分析[J]. 太阳能, 2019(12): 20-23.
WU J L, LIANG T, MI W J, et al.Development and application prospects analysis of floating PV power plants[J]. Solar energy, 2019(12): 20-23.
[8] CAZZANIGA R, CICU M, ROSA-CLOT M, et al.Floating photovoltaic plants: performance analysis and design solutions[J]. Renewable and sustainable energy reviews, 2018, 81: 1730-1741.
[9] 孔耀华, 肖福勤, 陈作钢, 等. 漂浮式光伏电站漂浮方阵流载荷数值计算研究[J]. 水动力学研究与进展(A辑), 2019, 34(2): 218-223.
KONG Y H, XIAO F Q, CHEN Z G, et al.Numerical research on current load of floating square array in floating PV power station[J]. Chinese journal of hydrodynamics, 2019, 34(2): 218-223.
[10] GORJIAN S, SHARON H, EBADI H, et al.Recent technical advancements, economics and environmental impacts of floating photovoltaic solar energy conversion systems[J]. Journal of cleaner production, 2021, 278: 124285.
[11] 肖福勤, 陈作钢, 代燚, 等. 漂浮式光伏电站方阵环境载荷计算方法研究[J]. 工程力学, 2020, 37(3): 245-256.
XIAO F Q, CHEN Z G, DAI Y, et al.Numerical method study on environmental loads of floating photovoltaic power array[J]. Engineering mechanics, 2020, 37(3): 245-256.
[12] 郭军, 陈作钢, 肖福勤, 等. 光伏电站漂浮方阵波浪载荷数值分析研究[J]. 太阳能学报, 2021, 42(1): 1-6.
GUO J, CHEN Z G, XIAO F Q, et al.Numerical research on wave loads of floating photovoltalic power station[J]. Acta energiae solaris sinica, 2021, 42(1): 1-6.
[13] KIM S H, YOON S J, CHOI W.Design and construction of 1 MW class floating PV generation structural system using FRP members[J]. Energies, 2017, 10(8): 1142.
[14] 刘浩晨, 国振, 王立忠, 等. 漂浮式水上光伏电站锚泊系统设计方法[J]. 太阳能学报, 2019, 40(12): 3485-3492.
LIU H C, GUO Z, WANG L Z, et al.Design method for mooring system of floating photovoltaic system[J]. Acta energiae solaris sinica, 2019, 40(12): 3485-3492.
[15] 糜文杰, 吴继亮, 梁甜, 等. 漂浮光伏电站系泊系统设计及分析计算[J]. 电力勘测设计, 2019(11): 6-11.
MI W J, WU J L, LIANG T, et al.Design and analysis of mooring system for floating photovoltaic power station[J]. Electric power survey & design, 2019(11): 6-11.
[16] 孔耀华, 王磊, 陈作钢, 等. 漂浮式光伏电站漂浮方阵的锚泊计算研究[J]. 可再生能源, 2019, 37(10): 1434-1439.
KONG Y H, WANG L, CHEN Z G, et al.Numerical research on a mooring system of floating PV power station[J]. Renewable energy resources, 2019, 37(10): 1434-1439.
[17] YANG Y, BASHIR M, LI C, et al.Investigation on mooring breakage effects of a 5 MW barge-type floating offshore wind turbine using F2A[J]. Ocean engineering, 2021, 233: 108887.
[18] ZHANG L X, SHI W, KARIMIRAD M, et al.Second-order hydrodynamic effects on the response of three semisubmersible floating offshore wind turbines[J]. Ocean engineering, 2020, 207: 107371.
[19] GONG S F, XU P, BAO S, et al.Numerical modelling on dynamic behaviour of deepwater S-lay pipeline[J]. Ocean engineering, 2014, 88: 393-408.
[20] TCHEOU G.Non-linear dynamics of mooring lines[D]. Boston: Massachusetts Institute of Technology, 1997.
[21] Environmental conditions and environmental loads: DNVGL-RP-C205[S]. DNVGL, 2019.
[22] Amarican Petroleum Institute(API). API RP 2SK Design and analysis of stationkeeping systems for floating structures[S]. Washington: API Publishing Services, 2015.
PDF(2768 KB)

Accesses

Citation

Detail

Sections
Recommended

/