OUTPUT CONTROL STRATEGY OF WIND STORAGE SYSTEM TRACKING PLAN CONSIDERING ULTRA SHORT TERM PREDICTION ERROR

Guo Kaijie, Geng Guangchao, Jiang Quanyuan, Li Xining, Wang Renshun

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (2) : 326-333.

PDF(1700 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1700 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (2) : 326-333. DOI: 10.19912/j.0254-0096.tynxb.2022-0908

OUTPUT CONTROL STRATEGY OF WIND STORAGE SYSTEM TRACKING PLAN CONSIDERING ULTRA SHORT TERM PREDICTION ERROR

  • Guo Kaijie1, Geng Guangchao2, Jiang Quanyuan2, Li Xining2, Wang Renshun2
Author information +
History +

Abstract

In plan tracking mode, a coordinated control method for the wind storage system is proposed to maximize the economic benefit. Firstly, a wind-storage system plan tracking control model is established based on ultra-short-term power forecast with the objective function of maximizing the total operation profits. Then, an ultra-short-term power prediction correction model is established based on wavelet transform and Sequence to Sequence (seq2seq). Ultra-short-term power prediction data and historical actual power data are used to correct the power prediction error. Finally, the plan tracking control model and the ultra-short-term prediction error correction model are combined with each other, and then a plan tracking control strategy for wind-storage system is proposed, considering the ultra-short-term forecast error. The simulation results show that the proposed strategy can significantly improve the tracking accuracy of wind power schedule, which increases the operation economy of the wind-storage system and promotes the renewable energy consumption.

Key words

wind power / energy storage / error correction / generation schedule tracking / rolling optimization

Cite this article

Download Citations
Guo Kaijie, Geng Guangchao, Jiang Quanyuan, Li Xining, Wang Renshun. OUTPUT CONTROL STRATEGY OF WIND STORAGE SYSTEM TRACKING PLAN CONSIDERING ULTRA SHORT TERM PREDICTION ERROR[J]. Acta Energiae Solaris Sinica. 2023, 44(2): 326-333 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0908

References

[1] 彭小圣, 熊磊, 文劲宇, 等. 风电集群短期及超短期功率预测精度改进方法综述[J]. 中国电机工程学报, 2016, 36(23): 6315-6326.
PENG X S, XIONG L, WEN J Y, et al.A summary of the state of the art for short-term and utra-short-term wind power prediction of regions[J]. Proceedings of the CSEE,2016, 36(23): 6315-6326.
[2] 孙泽伦, 陈洁, 闫亚岭, 等. 基于混合储能平抑风电波动的双堆自循环协调控制[J]. 太阳能学报, 2021, 42(4): 125-132.
SUN Z L, CHEN J, YAN Y L, et al.Coordination control of double reactors self-circulation based on hybrid energy storage for wind power fluctuation suppression[J]. Acta energiae solaris sinica, 2021, 42(4): 125-132.
[3] SHI J, LEE W J,LIU X F, et al.Generation scheduling optimization of wind-energy storage system based on wind power output fluctuation features[J]. IEEE transactions on industry applications, 2018, 54(1): 10-17.
[4] 魏东辉, 赵清华, 于舜尧, 等. 一种新型双电池风力发电储能系统及控制策略[J]. 太阳能学报, 2021, 42(3):259-267.
WEI D H,ZHAO Q H, YU S Y, et al.A novel dual-battery energy storage system and control strategy for wind power application[J]. Acta energiae solaris sinica, 2021,42(3): 259-267.
[5] LIU M, QUILUMBA F L, LEE W J.Dispatch scheduling for a wind farm with hybrid energy storage based on wind and LMP forecasting[J]. IEEE transactions on industry applications, 2015, 51(3): 1970-1977.
[6] 王泽爽, 陈嘉俊, 朱建全, 等. 计及循环寿命的储能优化配置与运营策略[J]. 电力自动化设备, 2021, 41(10): 75-81.
WANG Z S, CHEN J J, ZHU J Q, et al.Optimal configuration and operation strategy of energy storage considering cycle life[J]. Electric power automation equipment, 2021, 41(10): 75-81.
[7] 刘世林, 禹威威, 姚伟. 用于风电场发电计划跟踪的复合储能控制策略[J]. 太阳能学报, 2018, 39(4): 1060-1068.
LIU S L, YU W W, YAO W.Control strategy of composite energy storage for wind farm power generation schedule tracking[J]. Acta energiae solaris sinica, 2018, 39(4): 1060-1068.
[8] 杨婷婷, 李相俊, 齐磊, 等. 基于机会约束规划的储能系统跟踪光伏发电计划出力控制方法[J]. 电力建设, 2016, 37(8): 115-121.
YANG T T, LI X J,QI L, et al.Energy storage system tracking PV power generation planning output control method based on opportunity constrained programming[J]. Electric power construction, 2016, 37(8): 115-121.
[9] 李滨, 李倍存, 陈碧云. 含超前控制的风储系统滚动最优控制策[J]. 电力系统自动化,2019, 43(4): 25-32.
LI B, LI B C, CHEN B Y.Rolling optimal control strategy with lead control for wind power and energy storage systems[J]. Automation of electric power systems, 2019, 43(4):25-32.
[10] 李滨, 邓有雄, 陈碧云. 含超短期风功率预测增强处理的风储系统超前滚动优化控制策略[J]. 电网技术, 2021, 45(6): 2280-2287.
LI B, DENG Y X, CHEN B Y.Advanced rolling optimization control strategy for wind storage system with enhanced ultra-short-term wind power prediction[J]. Power system technology, 2021, 45(6): 2280-2287.
[11] 罗煜, 黄梅, 鲍谚, 等. 基于储能SOC 优化控制的风储电站实时跟踪发电计划控制策略[J]. 电工技术学报, 2016, 31(增刊1): 214-220.
LUO Y, HUANG M, BAO Y, et al.Tracking power generation real-time schedule strategy for wind power and battery energy storage combined system based on SOC optimal control of battery energy storage[J]. Transactions of China Electrotechnical Society, 2016, 31(S1): 214-220.
[12] 戚永志, 刘玉田. 风光储联合系统输出功率滚动优化与实时控制[J]. 电工技术学报, 2014, 29(8): 265-273.
QI Y Z,LIU Y T.Output power rolling optimization and real-time control in wind-photovoltaic-storage hybrid system[J]. Transactions of China Electrotechnical Society,2014, 29(8): 265-273.
[13] 闫鹤鸣, 李相俊, 麻秀范, 等. 基于超短期风电预测功率的储能系统跟踪风电计划出力控制方法[J]. 电网技术, 2015, 39(2): 432-439.
YAN H M, LI X J, MA X F, et al.Wind power output schedule tracking control method of energy storage system based on ultra-shortterm wind power prediction[J]. Power system technology, 2015, 39(2): 432-439.
[14] 叶林, 任成, 赵永宁, 等. 超短期风电功率预测误差数值特性分层分析方法[J]. 中国电机工程学报, 2016, 36(3): 692-700.
YE L,REN C, ZHAO Y N, et al.Stratification analysis approach of numerical characteristics for ultra-short term wind power forecasting error[J]. Proceedings of the CSEE,2016, 36(3): 692-700.
[15] 刘杰, 陈雪梅, 陆超, 等. 基于数据统计特性考虑误差修正的两阶段光伏功率预测[J]. 电网技术, 2020, 44(8): 2891-2897.
LIU J, CHEN X M, LU C, et al.Two-stage photovoltaic power forecasting and error correction method based on statistical characteristics of data[J]. Power system technology, 2020, 44(8): 2891-2897.
[16] SAROHA S, AGGARWAL S K.Wind power forecasting using wavelet transforms and neural networks with tapped delay[J]. CSEE journal of power and energy systems, 2018, 4(2): 197-209.
[17] YE L, DAI B H, PEI M, et al.Combined approach for short-term wind power forecasting based on wave division and seq2seq model using deep learning[J]. IEEE transactions on industry applications, 2022, 58(2): 2586-2596.
[18] 杨水丽, 李建林, 惠东, 等. 用于跟踪风电场计划出力的电池储能系统容量优化配置[J]. 电网技术, 2014, 38(6): 1485-1491.
YANG S L, LI J L, HUI D, et al.Optimal capacity configuration of battery energy storage system to track planned output of wind farm[J]. Power system technology,2014, 38(6): 1485-1491.
[19] 高飞, 杨凯, 惠东, 等. 储能用磷酸铁锂电池循环寿命的能量分析[J]. 中国电机工程学报, 2013, 33(5): 41-45.
GAO F, YANG K, HUI D, et al.Cycle-life energy analysis of LiFePO4 batteries for energy storage[J]. Proceedings of the CSEE, 2013, 33(5): 41-45.
[20] 徐若晨, 张江涛, 刘明义, 等. 电化学储能及抽水蓄能全生命周期度电成本分析[J]. 电工电能新技术, 2021, 40(12): 10-18.
XU R C, ZHANG J T, LIU M Y, et al.Analysis of life cycle cost of electrochemical energy storage and pumped storage[J]. Advanced technology of electrical engineering and energy, 2021, 40(12): 10-18.
PDF(1700 KB)

Accesses

Citation

Detail

Sections
Recommended

/