TEMPERATURE PREDICTION OF WIND FARM ELECTRICAL CABINETS CONSIDERING DISTORTION OF THERMAL IMAGING ELEMENTS

Wang Xiaodong, Du Gaoying, Wang Yachao, Liu Yingming

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (10) : 384-390.

PDF(2607 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2607 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (10) : 384-390. DOI: 10.19912/j.0254-0096.tynxb.2022-0910

TEMPERATURE PREDICTION OF WIND FARM ELECTRICAL CABINETS CONSIDERING DISTORTION OF THERMAL IMAGING ELEMENTS

  • Wang Xiaodong1, Du Gaoying1, Wang Yachao2, Liu Yingming1
Author information +
History +

Abstract

A hybrid deep neural network-based temperature correction and prediction method for wind farm electrical cabinets is proposed to address the problems of mapping bias and low prediction accuracy of temperature values caused by lens distortion in thermal imaging temperature monitoring of electrical cabinets in wind farms. The method uses Gaussian convolutional kernel structure to filter noisy image elements so as to complete image element denoising. A multilayer Convolutional Neural Networks (CNNs) model is developed. The denoised image elements are used as input to eliminate the distortion points in the image elements and improve the accuracy of the mapping between the temperature values and the target measurement points. The XGBoost-LSTM weighted fusion prediction model is built based on the corrected and assigned temperature data, and the output temperature prediction values of key monitoring points can be used in wind farm equipment fault warning, and the weights are trained to improve the prediction accuracy of the fusion model based on the structural variability of the model. The results show that the proposed method can effectively correct the distortion of the graphical elements and significantly improve the prediction accuracy.

Key words

wind farm / temperature prediction / distortion correction / convolutional neural network / XGBoost / LSTM

Cite this article

Download Citations
Wang Xiaodong, Du Gaoying, Wang Yachao, Liu Yingming. TEMPERATURE PREDICTION OF WIND FARM ELECTRICAL CABINETS CONSIDERING DISTORTION OF THERMAL IMAGING ELEMENTS[J]. Acta Energiae Solaris Sinica. 2023, 44(10): 384-390 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0910

References

[1] 张羽飞, 孟凡勇, 王永千, 等. 基于改进型LSTM的电力设备温度预测方法研究[J]. 电子测量与仪器学报, 2021, 35(12): 167-173.
ZHANG Y F, MENG F Y, WANG Y Q, et al.Research on temperature prediction method of power equipment based on improved LSTM[J]. Journal of electronic measurement and instrumentation, 2021, 35(12): 167-173.
[2] 杨明岱, 王宪, 赵前程, 等. 永磁同步风电机组发电机定子温度建模方法[J]. 太阳能学报, 2022, 43(5): 319-326.
YANG M D, WANG X, ZHAO Q C, et al.Modeling method of stator temperature of PMSG wind turbine[J]. Acta energiae solaris sinica, 2022, 43(5): 319-326.
[3] LI J, SU J, ZENG X.A solution method for image distortion correction model based on bilinear interpolation[J]. Computer optics, 2019, 43(1): 99-104.
[4] WU Y N, FAN Z, FANG Y C, et al.An effective correction method for AFM image distortion due to hysteresis and thermal drift[J]. IEEE transactions on instrumentation and measurement, 2021, 70: 1-12.
[5] 张志强, 王萍, 于旭东, 等. 高精度红外热成像测温技术研究[J]. 仪器仪表学报, 2020, 41(5): 10-18.
ZHANG Z Q, WANG P, YU X D, et al.Study on high accuracy temperature measurement technology of infrared thermal imager[J]. Chinese journal of scientific instrument, 2020, 41(5): 10-18.
[6] 郭鹏, 王桂松, 胥佳, 等. 基于BootStrap置信度计算的风电机组大部件温度预警方法[J]. 太阳能学报, 2021, 42(10): 168-175.
GUO P, WANG G S, XU J, et al.Temperature fault early warning method of wind turbine large components based on BootStrap confidence calculation[J]. Acta energiae solaris sinica, 2021, 42(10): 168-175.
[7] 魏书荣, 张鑫, 符杨, 等. 基于GRA-LSTM-Stacking模型的海上双馈风力发电机早期故障预警与诊断[J]. 中国电机工程学报, 2021, 41(7): 2373-2383.
WEI S R, ZHANG X, FU Y, et al.Early fault warning and diagnosis of offshore wind DFIG based on GRA-LSTM-stacking model[J]. Proceedings of the CSEE, 2021, 41(7): 2373-2383.
[8] 苏连成, 邢美玲, 张慧. 基于组合预测模型的风电机组关键部位故障检测[J]. 太阳能学报, 2021, 42(10): 220-225.
SU L C, XING M L, ZHANG H.Fault detection of key components of wind turbine based on combination prediction model[J]. Acta energiae solaris sinica, 2021, 42(10): 220-225.
[9] DHIMAN H S, DEB D, MUYEEN S M, et al.Wind turbine gearbox anomaly detection based on adaptive threshold and twin support vector machines[J]. IEEE transactions on energy conversion, 2021, 36(4): 3462-3469.
[10] 张文清, 肖厚元, 王众, 等. 基于双核高斯滤波的PSP图像去噪[J]. 电子测试, 2022(1): 39-42.
ZHANG W Q, XIAO H Y, WANG Z, et al.PSP image denoising with duo-core Gaussian filter[J]. Electronic test, 2022(1): 39-42.
[11] ZHANG K, GENG X P, YAN X H.Prediction of 3-D ocean temperature by multilayer convolutional LSTM[J]. IEEE geoscience and remote sensing letters, 2020, 17(8): 1303-1307.
[12] FU J, CHU J C, GUO P, et al.Condition monitoring of wind turbine gearbox bearing based on deep learning model[J]. IEEE access, 2019, 7: 57078-57087.
[13] 曹力, 潘巧波, 王明宇, 等. 基于混合核函数支持向量机的风电机组发电机温度预警方法[J]. 华电技术, 2020, 42(5): 43-49.
CAO L, PAN Q B, WANG M Y, et al.Early warning method for wind turbine generator temperature based on HK-SVM[J]. Huadian technology, 2020, 42(5): 43-49.
PDF(2607 KB)

Accesses

Citation

Detail

Sections
Recommended

/