ZONING PREDICTION OF FIELD PERFORMANCE DEGRATION RATE OF PV MODULES BASED ON WEIGHTS OF INFLUENCING FACTORS

Xiong Yuhui, Sun Shuaishuai, Li Shaoshuai, Xu Ben, Liu Weidong

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (10) : 182-190.

PDF(1343 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1343 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (10) : 182-190. DOI: 10.19912/j.0254-0096.tynxb.2022-0917

ZONING PREDICTION OF FIELD PERFORMANCE DEGRATION RATE OF PV MODULES BASED ON WEIGHTS OF INFLUENCING FACTORS

  • Xiong Yuhui1,2, Sun Shuaishuai1,3, Li Shaoshuai1, Xu Ben1, Liu Weidong1
Author information +
History +

Abstract

This study proposes a zoning prediction method for accurately evaluating the field performance degradation rate of PV modules. After systematically identifying and selecting the comprehensive factors affecting the performance degradation of PV modules, the weights of each factor on the performance degradation are determined based on the accelerated life test, and then a prediction model of the field performance degradation rate of photovoltaic modules is constructed. With the geographic clustering of the factors considering those influence weights and time weights, the geographical area divisions with the most consistent performance degradation degree are obtained. Therefore, the field degradation rate prediction can be performed based on the clustering regional categories. The prediction results of the field performance degradation rate of PV modules in the geographical region of Guangdong and Hainan provinces show that the relative error between the predicted value and the actual value is 6.67%.

Key words

PV modules / degradation / field life / forecasting / clustering algorithms

Cite this article

Download Citations
Xiong Yuhui, Sun Shuaishuai, Li Shaoshuai, Xu Ben, Liu Weidong. ZONING PREDICTION OF FIELD PERFORMANCE DEGRATION RATE OF PV MODULES BASED ON WEIGHTS OF INFLUENCING FACTORS[J]. Acta Energiae Solaris Sinica. 2023, 44(10): 182-190 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0917

References

[1] 刘卫东, 文根, 鄢伟安, 等. 基于退化数据和非线性伽马过程的光伏组件现场寿命评估[J]. 计算机集成制造系统, 2021, 27(12): 3494-3502.
LIU W D, WEN G, YAN W A, et al.Field lifetime assessment of photovoltaic modules based on degradation data-driven and nonlinear Gamma processes[J]. Computer integrated manufacturing systems, 2021, 27(12): 3494-3502.
[2] LUO W, KHOO Y S, HACKE P, et al.Analysis of the long-term performance degradation of crystalline silicon photovoltaic modules in tropical climates[J]. IEEE journal of photovoltaics, 2019, 9(1): 266-271.
[3] DHOKE A, MENGEDE A.Degradation analysis of PV modules operating in Australian environment[C]//2017 Australasian Universities Power Engineering Conference (AUPEC). Melbourne, Australia, 2018: 1-5.
[4] CHOI S, ISHII T, SATO R, et al.Performance degradation due to outdoor exposure and seasonal variation in amorphous silicon photovoltaic modules[J]. Thin solid films, 2018, 661(SEP.1): 116-121.
[5] DA FONSECA J E F, DE OLIVEIRA F S, MASSEN PRIEB C W, et al. Degradation analysis of a photovoltaic generator after operating for 15 years in southern Brazil[J]. Solar energy, 2020, 196: 196-206.
[6] SAADSAOUD M, AHMED A H, ER Z, et al.Experimental study of degradation modes and their effects on reliability of photovoltaic modules after 12 years of field operation in the steppe region[J]. Acta physica polonica A, 2017, 132(3-Ⅱ): 930-935.
[7] KIM S H, KIM D, KIM N.A Study on the lifetime prediction of organic photovoltaic modules under accelerated environmental conditions[J]. IEEE journal of photovoltaics, 2017, 7(2): 525-531.
[8] TAKANO A, NAKAMURA T, FUKUDA T, et al. Acceleration test using combined stresses for flexible solar modules[J]. Japanese journal of applied physics, 2018, 57(8S3): 08RG09.
[9] SIDDIQUI R, KUMAR R, JHA G K, et al.Comparison of different technologies for solar PV(photovoltaic) outdoor performance using indoor accelerated aging tests for long term reliability[J]. Energy, 2016, 107: 550-561.
[10] PARK S H, KIM J H.Application of gamma process model to estimate the lifetime of photovoltaic modules[J]. Solar energy, 2017, 147: 390-398.
[11] 樊静, 钱政, 王婧怡. 基于湿热试验的光伏组件功率衰减与使用寿命研究[J].计算机测量与控制, 2019, 27(4): 249-253.
FAN J, QIAN Z, WANG J Y.Study on power degradation and service lifetime of photovoltaic modules based on damp-heat test[J]. Computer measurement & control, 2019, 27(4): 249-253.
[12] MALVONI M, KUMAR N M, CHOPRA S S, et al.Performance and degradation assessment of large-scale grid-connected solar photovoltaic power plant in tropical semi-arid environment of India[J]. Solar energy, 2020, 203: 101-113.
[13] KAAYA I, LINDIG S, WEISS K A, et al.Photovoltaic lifetime forecast model based on degradation patterns[J]. Progress in photovoltaics: research and applications, 2020, 28(10): 979-992.
[14] PAN R, KUITCHE J, TAMIZHMANI G.Degradation analysis of solar photovoltaic modules: influence of environmental factor[C]//2011 Proceedings-Annual Reliability And Maintainability Symposium. Lake Buena Vista, FL, USA, 2011: 1-5.
[15] BALA SUBRAMANIYAN A B, PAN R, KUITCHE J, et al. Quantification of environmental effects on PV module degradation: a physics-based data-driven modeling method[J]. IEEE journal of photovoltaics, 2018, 8(5): 1289-1296.
[16] QUANSAH D A, ADARAMOLA M S.Assessment of early degradation and performance loss in five co-located solar photovoltaic module technologies installed in Ghana using performance ratio time-series regression[J]. Renewable energy, 2019, 131: 900-910.
[17] PIERI E, KYPRIANOU A, PHINIKARIDES A, et al.Forecasting degradation rates of different photovoltaic systems using robust principal component analysis and ARIMA[J]. IET renewable power generation, 2017, 11(10): 1245-1252.
[18] 鄢伟安, 孔文琪, 刘卫东, 等. 具有初始退化随机特征的光伏组件可靠性评估[J]. 太阳能学报, 2022, 43(3): 152-157.
YAN W A, KONG W Q, LIU W D, et al.Reliability assessment of photovoltaic modules with initial degradation random characteristics[J]. Acta energiae solaris sinica, 2022, 43(3): 152-157.
[19] HAN C.Analysis of moisture-induced degradation of thin-film photovoltaic module[J]. Solar energy materials and solar cells, 2020, 210: 110488.
[20] CHANTANA J, KAMEI A K, MINEMOTO T.Influences of environmental factors on Si-based photovoltaic modules after longtime outdoor exposure by multiple regression analysis[J]. Renewable energy, 2017, 101: 10-15.
[21] CHANTANA J, KAWANO Y, KAMEI A, et al.Description of degradation of output performance for photovoltaic modules by multiple regression analysis based on environmental factors[J]. Optik, 2019, 179: 1063-1070.
[22] LAM J C, LI D H W. Correlation between global solar radiation and its direct and diffuse components[J]. Building and environment, 1996, 31(6): 527-535.
[23] AYODELE T R, OGUNJUYIGBE A S O. Prediction of monthly average global solar radiation based on statistical distribution of clearness index[J]. Energy, 2015, 90: 1733-1742.
[24] BADESCU V.3D isotropic approximation for solar diffuse irradiance on tilted surfaces[J]. Renewable energy, 2002, 26(2): 221-233.
[25] MOUSAVI MALEKI S A, HIZAM H, GOMES C. Estimation of hourly, daily and monthly global solar radiation on inclined surfaces: models re-visited[J]. Energies, 2017, 10(1): 134.
[26] LAVE M, HAYES W, POHL A, et al.Evaluation of global horizontal irradiance to plane-of-array irradiance models at locations across the United States[J]. IEEE journal of photovoltaics, 2015, 5(2): 597-606.
[27] KOEHL M, HECK M, WIESMEIER S.Modelling of conditions for accelerated lifetime testing of Humidity impact on PV-modules based on monitoring of climatic data[J]. Solar energy materials and solar cells, 2012, 99: 282-291.
[28] 孔林婷, 邓薇, 杨超. 一种实地在线测量光伏组件衰减率的方法[J]. 国外电子测量技术, 2020, 39(8): 84-87.
KONG L T, DENG W, YANG C.Method for on-line measurement of attenuation rate of photovoltaic modules[J]. Foreign electronic measurement technology, 2020, 39(8): 84-87.
[29] PARK N, KIM J H, KIM H A, et al.Development of an algebraic model that predicts the maximum power output of solar modules including their degradation[J]. Renewable energy, 2017, 113: 141-147.
[30] KAAYA I, KOEHL M, MEHILLI A P, et al.Modeling outdoor service lifetime prediction of PV modules: effects of combined climatic stressors on PV module power degradation[J]. IEEE journal of photovoltaics, 2019, 9(4): 1105-1112.
[31] LIU W D, LI J K, LI S S, et al.Research on optimum tilt angle of photovoltaic module based on regional clustering of influencing factors of power generation[J]. International journal of energy research, 2021, 45(7): 11002-11017.
[32] 张美霞, 李丽, 杨秀, 等. 基于高斯混合模型聚类和多维尺度分析的负荷分类方法[J]. 电网技术, 2020, 44(11): 4283-4296.
ZHANG M X, LI L, YANG X, et al.A load classification method based on Gaussian mixture model clustering and multi-dimensional scaling analysis[J]. Power system technology, 2020, 44(11): 4283-4296.
[33] HAN H L, DONG X, LAI H W, et al.Analysis of the degradation of monocrystalline silicon photovoltaic modules after long-term exposure for 18 years in a hot-humid climate in China[J]. IEEE journal of photovoltaics, 2018, 8(3): 806-812.
[34] 王冬, 王黎, 黄静. 光伏组件自然老化年度衰减率分析[J]. 信阳师范学院学报(自然科学版), 2018, 31(3): 375-380.
WANG D, WANG L, HUANG J.Analysis on annual attenuation rate of PV modules due to natural aging[J]. Journal of Xinyang Normal University(natural science edition), 2018, 31(3): 375-380.
[35] 曾湘安, 冯江涛, 揭敢新, 等. 晶硅光伏组件在典型气候环境下的性能研究[J]. 中山大学学报(自然科学版), 2016, 55(6): 86-91.
ZENG X A, FENG J T, JIE G X, et al.Performance of crystalline silicon PV modules applied in the typical climate[J]. Acta scientiarum naturalium universitatis Sunyatseni, 2016, 55(6): 86-91.
PDF(1343 KB)

Accesses

Citation

Detail

Sections
Recommended

/