PRESSURE TRACKING CONTROL METHOD OF FUEL CELL HYDROGEN SUPPLY SYSTEM BASED ON LADRC

Zhao Hongshan, Wang Yufeng, Ma Libo, Jiang Yiming, Xu Junyang

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (12) : 463-470.

PDF(1728 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1728 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (12) : 463-470. DOI: 10.19912/j.0254-0096.tynxb.2022-0922

PRESSURE TRACKING CONTROL METHOD OF FUEL CELL HYDROGEN SUPPLY SYSTEM BASED ON LADRC

  • Zhao Hongshan, Wang Yufeng, Ma Libo, Jiang Yiming, Xu Junyang
Author information +
History +

Abstract

Aiming at the problem that the pressure balance of cathode and anode of fuel cell stack is easily disturbed, a second-order linear ADRC method for hydrogen supply system of fuel cell stack is proposed. Firstly, based on the operation characteristics of the fuel cell hydrogen supply system, a control oriented third-order hydrogen supply system model is established. Then, based on the control oriented third-order model and the auto disturbance rejection theory, an extended state observer and a linear state error feedback are designed for the hydrogen supply system. On this basis, a second-order linear auto disturbance rejection control law for the pressure tracking of the hydrogen supply system of the fuel cell stack is obtained. The simulation results show that the pressure tracking control method of hydrogen supply system based on second-order linear auto disturbance rejection control has excellent response speed, accuracy and anti-interference ability, and can realize real-time estimation and compensation of system disturbance terms, as well as fast and stable tracking of fuel cell anode pressure to cathode pressure.

Key words

fuel cell / pressure control / disturbance rejection / hydrogen supply system

Cite this article

Download Citations
Zhao Hongshan, Wang Yufeng, Ma Libo, Jiang Yiming, Xu Junyang. PRESSURE TRACKING CONTROL METHOD OF FUEL CELL HYDROGEN SUPPLY SYSTEM BASED ON LADRC[J]. Acta Energiae Solaris Sinica. 2023, 44(12): 463-470 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0922

References

[1] 胡兵, 王小娟, 徐立军, 等. 基于KMO-PCA-BP的燃料电池堆输出电压预测方法[J]. 太阳能学报, 2022, 43(3): 12-19.
HU B, WANG X J, XU L J, et al.Output voltage prediction method of fuel cell stack based on KMO-PCA-BP[J]. Acta energiae solaris sinica, 2022, 43(3): 12-19.
[2] PARK G, GAJIC Z.Sliding mode control of a linearized polymer electrolyte membrane fuel cell model[J]. Journal of power sources, 2012, 212: 226-232.
[3] HONG L,CHEN J, LIU Z Y, et al.A nonlinear control strategy for fuel delivery in PEM fuel cells considering nitrogen permeation[J]. International journal of hydrogen energy, 2017, 42(2): 1565-1576.
[4] QIN B, WANG X L, WANG L, et al.Hydrogen excess ratio control of ejector-based hydrogen recirculation PEM fuel cell system[C]//2019 34rd Youth Academic Annual Conference of Chinese Association of Automation(YAC), Jinzhou, China, 2019: 648-653.
[5] HE H W, QUAN S W, WANG Y X.Hydrogen circulation system model predictive control for polymer electrolyte membrane fuel cell-based electric vehicle application[J]. International journal of hydrogen energy, 2020, 45(39): 20382-20390.
[6] LI Y K, ZHAO X Q, TAO S Y, et al.Experimental study on anode and cathode pressure difference control and effects in a proton exchange membrane fuel cell system[J]. Energy technology, 2015, 3(9): 946-954.
[7] EBADIGHAJARI A, DEVAAL J, GOLNARAGHI F.Multivariable control of hydrogen concentration and fuel over-pressure in a polymer electrolyte membrane fuel cell with anode re-circulation[C]//2016 American Control Conference (ACC), Boston, MA, USA, 2016: 4428-4433.
[8] 常九健, 王晓林, 方建平, 等. 质子交换膜燃料电池阴阳极压力控制策略研究[J]. 汽车工程, 2021, 43(10): 1466-1471.
CHANG J J, WANG X L, FANG J P, et al.Study on control strategy for anode and cathode pressures in proton exchange membrane fuel cell[J]. Automotive engineering, 2021, 43(10): 1466-1471.
[9] 张家明, 马天才, 丛铭, 等. 大功率燃料电池氢气系统建模与控制[J]. 汽车技术, 2021(2): 23-27.
ZHANG J M, MA T C, CONG M, et al.Hydrogen system modelling & control for high-power fuel cell system[J]. Automobile technology, 2021(2): 23-27.
[10] 郭爱, 陈维荣, 李奇, 等. 车用燃料电池氢气供应系统的预测控制[J]. 太阳能学报, 2013, 34(8): 1484-1491.
GUO A, CHEN W R, LI Q, et al.Predictive control of hydrogen supplying system for fuel cells for vehicle[J]. Acta energiae solaris sinica, 2013, 34(8): 1484-1491.
[11] 郭伟静. 燃料电池系统氢循环方案综述[J]. 时代汽车, 2021(6): 144-145, 160.
GUO W J.Overview of hydrogen cycle schemes for fuel cell systems[J]. Auto time, 2021(6): 144-145,160.
[12] PUKRUSHPAN J T.Modeling and control of fuel cell systems and fuel processors[D]. Ann Arbor: University of Michigan,2003.
[13] 张广孟, 王学科, 谢晓峰. 氢气循环条件下燃料电池中氮气和水传输特性研究[J]. 高校化学工程学报, 2020, 34(6): 1386-1392.
ZHANG G M, WANG X K, XIE X F.Analysis of nitrogen and water transport in proton exchange membrane fuel cell under hydrogen recirculation[J]. Journal of chemical engineering of Chinese universities, 2020, 34(6): 1386-1392.
[14] PUKRUSHPAN J T, STEFANOPOULOU A G, PENG H E.Control of fuel cell breathing[J]. IEEE control systems magazine, 2004, 24(2): 30-46.
PDF(1728 KB)

Accesses

Citation

Detail

Sections
Recommended

/