COOPERATIVE GAME OF MULTI-POWER-GAS INTERCONNECTION SYSTEM CONSIDERING NEW ENERGY CONSUMPTION AND LOW CARBON EMISSION

Jiang Dongrong, Guo Yixin, Liang Ke, Niu Jiaqi, Shi Keke, Yang Chao

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (10) : 58-67.

PDF(1811 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1811 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (10) : 58-67. DOI: 10.19912/j.0254-0096.tynxb.2022-0962

COOPERATIVE GAME OF MULTI-POWER-GAS INTERCONNECTION SYSTEM CONSIDERING NEW ENERGY CONSUMPTION AND LOW CARBON EMISSION

  • Jiang Dongrong1,2, Guo Yixin1,2, Liang Ke1,2, Niu Jiaqi, Shi Keke1,2, Yang Chao1,2
Author information +
History +

Abstract

In order to increase the consumption of new energy and reduce carbon emission under the“double carbon”target, a multi-regional low-carbon cooperative game model considering flexible resources and carbon capture is proposed. This model can maximize the benefit of low-carbon operation when a large number of flexible equipment participate in scheduling,meanwhile improve the comprehensive energy utilization rate of the system. And the use of asymmetric Nash bargaining in multi-regional game rational allocation of the interests of the system, improve the enthusiasm of each subsystem to actively participate in the cooperation mechanism. Considering that the proposed model is a convex optimization problem,the distributed ADMM algorithm is used to solve the problem, which has good convergence and robustness. Through the comparative analysis of examples, it is proved that the cooperative game mechanism can realize the coordinated optimal scheduling of electric energy in different regions and different types of flexible equipment,which can increase the acceptance capacity of new energy power generation such as wind power and photovoltaic power,at the same time effectively reduce the net cost and carbon emissions of regional integrated energy system.

Key words

power-gas interconnection system / low carbon / cooperative game / flexible resource / new energy consumption / asymmetric Nash bargaining

Cite this article

Download Citations
Jiang Dongrong, Guo Yixin, Liang Ke, Niu Jiaqi, Shi Keke, Yang Chao. COOPERATIVE GAME OF MULTI-POWER-GAS INTERCONNECTION SYSTEM CONSIDERING NEW ENERGY CONSUMPTION AND LOW CARBON EMISSION[J]. Acta Energiae Solaris Sinica. 2023, 44(10): 58-67 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0962

References

[1] 王辉, 陈波波, 廖昆. 基于低碳激励型出清的跨省区发电权交易双层优化模型[J]. 可再生能源, 2019, 37(12): 1842-1849.
WANG H, CHEN B B, LIAO K.Bi-optimal model for trans-provincial power generation trading based on low-carbon incentive clearing method[J]. Renewable energy resources, 2019, 37(12): 1842-1849.
[2] 薛开阳, 楚瀛, 凌梓, 等. 考虑柔性负荷的综合能源系统低碳经济优化调度[J]. 可再生能源, 2019, 37(8): 1206-1213.
XUE K Y, CHU Y, LING Z, et al.Low-carbon economic optimal dispatch of integrated energy system considering flexible load[J]. Renewable energy resources, 2019, 37(8): 1206-1213.
[3] 章激扬, 李达, 杨苹, 等. 光伏发电发展趋势分析[J]. 可再生能源, 2014, 32(2): 127-132.
ZHANG J Y, LI D, YANG P, et al.Development trend analysis of photovoltaic power generation[J]. Renewable energy resources, 2014, 32(2): 127-132.
[4] WANG Y L, WANG Y D, HUANG Y J, et al.Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network[J]. Applied energy, 2019, 251: 113410.
[5] MU Y F, CHEN W Q, YU X D, et al.A double-layer planning method for integrated community energy systems with varying energy conversion efficiencies[J]. Applied energy, 2020, 279: 115700.
[6] 潘超, 范宫博, 王锦鹏, 等. 灵活性资源参与的电热综合能源系统低碳优化[J]. 电工技术学报, 2023, 38(6): 1633-1647.
PAN C, FAN G B, WANG J P, et al.Low-carbon optimization of electric and heating integrated energy system with flexible resource participation[J]. Transactions of China Electrotechnical Society, 2023, 38(6): 1633-1647.
[7] 熊伟, 马志程, 张晓英, 等. 计及风、光消纳的风电-光伏-光热互补发电二层优化调度[J]. 太阳能学报, 2022, 43(7): 39-48.
XIONG W, MA Z C, ZHANG X Y, et al.Two-layer optimal dispatch of WF-PV-CSP hybrid power generation considering wind power and photovoltaic consumption[J]. Acta energiae solaris sinica, 2022, 43(7): 39-48.
[8] 马志侠, 张林鍹, 郑兴, 等. 基于PEMFC-P2G与风光不确定的综合能源系统优化调度[J]. 太阳能学报, 2022, 43(6): 441-447.
MA Z X, ZHANG L X, ZHENG X, et al.Optimal scheduling of integrated energy system based on PEMFC-P2G and inpact of wind power and photovoltaic uncertainty[J]. Acta energiae solaris sinica, 2022, 43(6): 441-447.
[9] 吴江, 王晶晶, 张强, 等. 考虑电转气消纳风电的电-气综合能源系统两阶段鲁棒协同调度[J]. 太阳能学报, 2022, 43(2): 436-443.
WU J, WANG J J, ZHANG Q, et al.Two-stage robust cooperative scheduling for electricity-gas integrated energy system considering power-to-gas for wind power accommodation[J]. Acta energiae solaris sinica, 2022, 43(2): 436-443.
[10] 崔杨, 邓贵波, 曾鹏, 等. 计及碳捕集电厂低碳特性的含风电电力系统源-荷多时间尺度调度方法[J]. 中国电机工程学报, 2022, 42(16): 5869-5886.
CUI Y, DENG G B, ZENG P, et al.Multi-time scale source-load dispatch method of power system with wind power considering low-carbon characteristics of carbon capture power plant[J]. Proceedings of the CSEE, 2022, 42(16): 5869-5886.
[11] 付岚, 单智习, 牟光臣. 含可响应资源的综合能源多目标低碳优化调度[J]. 可再生能源, 2022, 40(7): 972-979.
FU L, SHAN Z X, MU G C.Multi-objective low carbon optimization of smart distribution network considering responsive distributed energy[J]. Renewable energy resources, 2022, 40(7): 972-979.
[12] 孙惠娟, 蒙锦辉, 彭春华. 风-光-水-碳捕集多区域虚拟电厂协调优化调度[J]. 电网技术, 2019, 43(11): 4040-4051.
SUN H J, MENG J H, PENG C H.Coordinated optimization scheduling of multi-region virtual power plant with wind-power/photovoltaic/hydropower/carbon-capture units[J]. Power system technology, 2019, 43(11): 4040-4051.
[13] 田丰, 贾燕冰, 任海泉, 等. 考虑碳捕集系统的综合能源系统“源-荷”低碳经济调度[J]. 电网技术, 2020, 44(9): 3346-3355.
TIAN F, JIA Y B, REN H Q, et al.“source-load” low-carbon economic dispatch of integrated energy system considering carbon capture system[J]. Power system technology, 2020, 44(9): 3346-3355.
[14] 刘晓峰, 高丙团, 李扬. 博弈论在电力需求侧的应用研究综述[J]. 电网技术, 2018, 42(8): 2704-2711.
LIU X F, GAO B T, LI Y.Review on application of game theory in power demand side[J]. Power system technology, 2018, 42(8): 2704-2711.
[15] 祝荣, 任永峰, 孟庆天, 等. 基于合作博弈的综合能源系统电-热-气协同优化运行策略[J]. 太阳能学报, 2022, 43(4): 20-29.
ZHU R, REN Y F, MENG Q T, et al.Electricity-heat-gas cooperative optimal operation strategy of integrated energy system based on cooperative game[J]. Acta energiae solaris sinica, 2022, 43(4): 20-29.
[16] TANG R, WANG S W, LI H X.Game theory based interactive demand side management responding to dynamic pricing in price-based demand response of smart grids[J]. Applied energy, 2019, 250: 118-130.
[17] MEI S W, WANG Y Y, LIU F, et al.Game approaches for hybrid power system planning[J]. IEEE transactions on sustainable energy, 2012, 3(3): 506-517.
[18] 赵鹏杰, 吴俊勇, 张文浩, 等. 考虑配网潮流和源荷不确定性的多微电网点对点合作调度策略[J]. 电网技术, 2022, 46(12): 4885-4896.
ZHAO P J, WU J Y, ZHANG W H, et al.Cooperative peer to peer scheduling of multi-microgrids considering distribution network power flow and source-load uncertainty[J]. Power system technology, 2022, 46(12): 4885-4896.
[19] 段佳南, 谢俊, 冯丽娜, 等. 基于合作博弈论的风-光-水-氢多主体能源系统增益分配策略[J]. 电网技术, 2022, 46(5): 1703-1712.
DUAN J N, XIE J, FENG L N, et al.Synergistic gains allocation for multi-stakeholder wind-solar-hydro-hydrogen energy system based on cooperative game theory[J]. Power system technology, 2022, 46(5): 1703-1712.
[20] 芮涛, 李国丽, 王群京, 等. 配电侧多微电网日前电能交易纳什议价方法[J]. 电网技术, 2019, 43(7): 2576-2585.
RUI T, LI G L, WANG Q J, et al.Nash bargaining method for multi-microgrid energy trading in distribution network[J]. Power system technology, 2019, 43(7): 2576-2585.
PDF(1811 KB)

Accesses

Citation

Detail

Sections
Recommended

/