EFFECT OF SURGE MOTION ON DYNAMIC STALL CHARACTERISTICS OF WIND TURBINE AIRFOIL

Feng Junxin, Zhao Zhenzhou, Liu Yige, Liu Huiwen, Jiang Ruifang, Wang Dingding

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (12) : 182-189.

PDF(3026 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3026 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (12) : 182-189. DOI: 10.19912/j.0254-0096.tynxb.2022-0963

EFFECT OF SURGE MOTION ON DYNAMIC STALL CHARACTERISTICS OF WIND TURBINE AIRFOIL

  • Feng Junxin, Zhao Zhenzhou, Liu Yige, Liu Huiwen, Jiang Ruifang, Wang Dingding
Author information +
History +

Abstract

The transition model and SST k-ω turbulence model are used to study dynamic stall of S809 airfoil under the influence of hybrid motion (surge and pitch) with different surge directions, frequencies and amplitude. The results show that the turbulent kinetic energy of the airfoil is enhanced in the upwind case with increasing of surge frequency, the boundary layer energy is increased and the disturbance degree is deepened, which makes the airfoil stall in advance while the lift is increased. The higher the surge frequency is, the stronger and wider coverage leading-edge vortex is created in the upwind process, which accelerates the vortex shedding. The surge weakens the induction effect of the leading-edge vortex and effectively reduces the topology of trailing edge vortex in downwind process. With the surge amplitude increasing, the response amplitude of the lift and drag coefficient of the airfoil increases significantly, especially in the pitching up stage when the airfoil is upwind. This study reveals the dynamic stall characteristics of airfoil under the condition of surge motion, which is important to accurately understand and evaluate the aerodynamic performance of floating wind turbine.

Key words

wind turbines / aerodynamics / numerical simulation / surge motion / pitching motion / dynamic stall

Cite this article

Download Citations
Feng Junxin, Zhao Zhenzhou, Liu Yige, Liu Huiwen, Jiang Ruifang, Wang Dingding. EFFECT OF SURGE MOTION ON DYNAMIC STALL CHARACTERISTICS OF WIND TURBINE AIRFOIL[J]. Acta Energiae Solaris Sinica. 2023, 44(12): 182-189 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0963

References

[1] JONKMAN J M.Dynamics modeling and loads analysis of an offshore floating wind turbine[M]. USA: National Renewable Energy Lab, 2007:1-209.
[2] SEBASTIAN T, LACKNER M A.Characterization of the unsteady aerodynamics of offshore floating wind turbines[J]. Wind energy, 2013, 16(3): 339-352.
[3] SEBASTIAN T, LACKNER M A.Development of a free vortex wake method code for offshore floating wind turbines[J]. Renewable energy, 2012, 46: 269-275.
[4] SEBASTIAN T, LACKNER M.Analysis of the induction and wake evolution of an offshore floating wind turbine[J]. Energies, 2012, 5(4): 968-1000.
[5] 林易, 李晔, 段磊. 漂浮式风力机非定常气动特性分析[J]. 船舶与海洋工程, 2019, 35(6): 8-14.
LIN Y, LI Y, DUAN L.Analysis on the unsteady aerodynamics of floating wind turbines[J]. Naval architecture and ocean engineering, 2019, 35(6): 8-14.
[6] 刘利琴, 肖昌水, 郭颖. 海上浮式水平轴风力机气动特性研究[J]. 太阳能学报, 2021, 42(1): 294-301.
LIU L Q, XIAO C S, GUO Y.Study on aerodynamic characteristics of floating horizontal wind turbine[J]. Acta energiae solaris sinica, 2021, 42(1): 294-301.
[7] 刘强, 杨科, 黄宸武, 等. 漂浮式风力机动态响应特性研究[J]. 工程热物理学报, 2013, 34(7): 1256-1261.
LIU Q, YANG K, HUANG C W, et al.Study on the dynamic response of floating wind turbines[J]. Journal of engineering thermophysics, 2013, 34(7): 1256-1261.
[8] TRAN T T, KIM D H.A CFD study into the influence of unsteady aerodynamic interference on wind turbine surge motion[J]. Renewable energy, 2016, 90: 204-228.
[9] 吴俊, 丁金鸿, 何炎平, 等. 海上浮式风机气动性能数值模拟[J]. 海洋工程, 2016, 34(3): 38-46.
WU J, DING J H, HE Y P, et al.Numerical analysis of aerodynamic performance of floating offshore wind turbine[J]. The ocean engineering, 2016, 34(3): 38-46.
[10] 韩清凯, 唐世浩, 沈意平, 等. 漂浮运动对风力机气动特性的影响分析[J]. 计算力学学报, 2016, 33(3): 351-356, 368.
HAN Q K, TANG S H, SHEN Y P, et al.Effect of floating foundation motion on the aerodynamic characteristics of the floating offshore wind turbine[J]. Chinese journal of computational mechanics, 2016, 33(3): 351-356, 368.
[11] 任年鑫, 李玉刚, 欧进萍. 浮式海上风力机叶片气动性能的流固耦合分析[J]. 计算力学学报, 2014, 31(1): 91-95.
REN N X, LI Y G, OU J P.The fluid-structure interaction analysis of aerodynamic performance of floating offshore wind turbine blade[J]. Chinese journal of computational mechanics, 2014, 31(1): 91-95.
[12] 赵振宙, 苏德程, 王同光, 等. 涡流发生器对动态失速影响的模拟研究[J]. 机械工程学报, 2019, 55(24): 203-209.
ZHAO Z Z, SU D C, WANG T G, et al.Simulation study on the effect of vortex generators on dynamic stall[J]. Journal of mechanical engineering, 2019, 55(24): 203-209.
[13] 赵振宙, 孟令玉, 王同光, 等. 涡流发生器对风力机翼段动态失速影响[J]. 哈尔滨工程大学学报, 2021, 42(2): 233-239.
ZHAO Z Z, MENG L Y, WANG T G, et al.Influence of vortex generators on dynamic stall of wind turbine airfoil segment[J]. Journal of Harbin Engineering University, 2021, 42(2): 233-239.
[14] MENTER F R, LANGTRY R B, LIKKI S R, et al.A correlation-based transition model using local variables—part I: model formulation[J]. Journal of turbomachinery, 2006, 128(3): 413.
[15] GLAUERT H.Aerodynamic theory[M]. Berlin: Springer Berlin Heidelberg, 1935: 409-414.
[16] JONKMAN J M.Dynamics of offshore floating wind turbines-model development and verification[J]. Wind energy, 2009, 12(5): 459-492.
[17] WAYMAN E N.Coupled dynamics and economic analysis of floating wind turbine systems[D]. Massachusetts: Massachusetts Institute of Technology, 2007.
[18] DE VAAL J B, HANSEN M O, MOAN T. Effect of wind turbine surge motion on rotor thrust and induced velocity[J]. Wind energy, 2014, 17(1): 105-121.
[19] RAMSAY R F, HOFFMAN M J, GREOREK G M.Effects of grit roughness and pitch oscillations on the S809 airfoil[R]. NREL/TP-442-7817, 1995.
PDF(3026 KB)

Accesses

Citation

Detail

Sections
Recommended

/