OPTIMIZATION DESIGN OF TUNED MASS DAMPER FOR FLOATING WIND TURBINES BASED ON DYNAMIC MODEL AND MULTIPLE POPULATION GENETIC ALGORITHM

Guo Haiyu, Zhang Yinghao, Liu Yingming, Wang Xiaodong, Zhu Ruonan

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (11) : 217-223.

PDF(2128 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2128 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (11) : 217-223. DOI: 10.19912/j.0254-0096.tynxb.2022-0964

OPTIMIZATION DESIGN OF TUNED MASS DAMPER FOR FLOATING WIND TURBINES BASED ON DYNAMIC MODEL AND MULTIPLE POPULATION GENETIC ALGORITHM

  • Guo Haiyu, Zhang Yinghao, Liu Yingming, Wang Xiaodong, Zhu Ruonan
Author information +
History +

Abstract

For the 5 MW ITI Barge floating wind turbine, this paper utilizes the dynamic model and multi-population genetic algorithm to determine the optimal values of each parameter of Tuned mass damper (TMD) in nacelle. To begin with, the Lagrange equation was employed to establish the dynamic model of the turbine incorporating TMD, followed by the utilization of the Levenberg-Marquardt (LM) algorithm to identify the unknown parameters within the dynamic model. Subsequently, the optimization of TMD parameters was carried out using a multi-population genetic algorithm and dynamic model, with the objective function being the standard deviation of the tower's vertical displacement. Finally, TMD parameters were redesigned according to the optimal solution, and the load reducing effect of TMD was verified by the full coupled FAST model under five typical wind-wave combined load conditions. The results show that the TMD with optimized parameters could effectively reduce the fatigue load of the Barge floating turbine. In comparison to the control scenario without TMD, the utilization of TMD results in a reduction of approximately 6% to 48% in the standard deviation of the tower longitudinal displacement. Similarly, the standard deviation of the tower root longitudinal bending moment decreases by approximately 10% to 45%. The standard deviation of blade root longitudinal bending moment decreases by about 11%-33%.

Key words

offshore wind turbines / dynamic models / global optimization / tuned mass damper

Cite this article

Download Citations
Guo Haiyu, Zhang Yinghao, Liu Yingming, Wang Xiaodong, Zhu Ruonan. OPTIMIZATION DESIGN OF TUNED MASS DAMPER FOR FLOATING WIND TURBINES BASED ON DYNAMIC MODEL AND MULTIPLE POPULATION GENETIC ALGORITHM[J]. Acta Energiae Solaris Sinica. 2023, 44(11): 217-223 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0964

References

[1] 张艺三, 胡松, 王芳. 计及恶劣天气约束的海上风能波浪能资源分布研究[J]. 太阳能学报, 2022, 43(12): 200-205.
ZHANG Y S, HU S, WANG F.Distribution of offshore wind and wave energy resources considering severe weather constraints[J]. Acta energiae solaris sinica, 2022, 43(12): 200-205.
[2] 宋子秋, 冯翰宇, 余照国, 等. 基于模型预测控制的半潜漂浮式风机协调控制方法研究[J]. 中国电机工程学报, 2022, 42(12): 4330-4339.
SONG Z Q, FENG H Y, YU Z G, et al.Coordinated control of semi-submersible floating turbine with model predictive control strategy[J]. Proceedings of the CSEE, 2022, 42(12): 4330-4339.
[3] XIE S Y, JIN X, HE J A, et al.Structural responses suppression for a barge-type floating wind turbine with a platform-based TMD[J]. IET renewable power generation, 2019, 13(13): 2473-2479.
[4] 金鑫, 王亚明, 李浪, 等. 基于LQG的独立变桨控制技术对风电机组气动载荷影响研究[J]. 中国电机工程学报, 2016, 36(22): 6164-6170.
JIN X, WANG Y M, LI L, et al.Dynamics loads optimization analysis of wind turbine based on LQG independent pitch control[J]. Proceedings of the CSEE, 2016, 36(22): 6164-6170.
[5] MAGAR K T, BALAS M J, FROST S.Direct adaptive control for individual blade pitch control of wind turbines for load reduction[J]. Journal of intelligent material systems and structures, 2015, 26(12): 1564-1572.
[6] LACKNER M A, ROTEA M A.Passive structural control of offshore wind turbines[J]. Wind energy, 2011, 14(3): 373-388.
[7] LACKNER M A, ROTEA M A.Structural control of floating wind turbines[J]. Mechatronics, 2011, 21(4): 704-719.
[8] STEWART G M.Load reduction of floating wind turbines using tuned mass dampers[D]. Amherst: University of Massachusetts Amherst, 2012.
[9] YANG J J, HE E M, HU Y Q.Dynamic modeling and vibration suppression for an offshore wind turbine with a tuned mass damper in floating platform[J]. Applied ocean research, 2019, 83: 21-29.
[10] 贺尓铭, 熊波, 杨佳佳. 基于TMD-HMD的海上浮式风力机主被动综合振动控制[J]. 机械工程学报, 2020, 56(3): 73-79.
HE E M, XIONG B, YANG J J.Study on active-passive integrated vibration control of offshore floating wind turbine based on TMD-HMD[J]. Journal of mechanical engineering, 2020, 56(3): 73-79.
[11] 金鑫, 王宁, 周雷. 基于MTMD的漂浮式风力机侧向振动控制[J]. 太阳能学报, 2021, 42(9): 344-348.
JIN X, WANG N, ZHOU L.Lateral vibration control of floating wind turbines based on MTMD[J]. Acta energiae solaris sinica, 2021, 42(9): 344-348.
[12] 黄致谦, 丁勤卫, 李春, 等. 基于多岛遗传算法的漂浮式风力机稳定性多重调谐质量阻尼器优化控制[J]. 中国机械工程, 2018, 29(11): 1349-1356.
HUANG Z Q, DING Q W, LI C, et al.Optimal control of MTMD in floating wind turbine stability based on MIGA[J]. China mechanical engineering, 2018, 29(11): 1349-1356.
[13] VILLOSLADA D, SANTOS M, TOMAS-RODRIGUEZ M.General methodology for the identification of reduced dynamic models of barge-type floating wind turbines[J]. Energies, 2021, 14(13): 3902.
[14] HU Y L, WANG J N, CHEN M Z Q, et al. Load mitigation for a barge-type floating offshore wind turbine via inerter-based passive structural control[J]. Engineering structures, 2018, 177: 198-209.
[15] 丁勤卫, 李春, 袁伟斌, 等. 风波耦合作用下垂荡板对漂浮式风力机Spar平台动态响应影响[J]. 中国电机工程学报, 2019, 39(4): 1113-1127.
DING Q W, LI C, YUAN W B, et al.Effects of heave plate on dynamic response of floating wind turbine Spar platform under the coupling effects of wind and wave[J]. Proceedings of the CSEE, 2019, 39(4): 1113-1127.
[16] 黄国燕, 朱敏. 基于状态空间的漂浮式风电机组控制策略研究[J]. 太阳能学报, 2021, 42(6): 337-341.
HUANG G Y, ZHU M.Control stratege research of floating wind turbines based on state-space[J]. Acta energiae solaris sinica, 2021, 42(6): 337-341.
[17] JONKMAN J M, BUHL M L.FAST user's guide - updated august 2005[J]. National Renewable Energy Lab, 2005, 1: 1-244.
[18] JONKMAN J M.Dynamics modeling and loads analysis of an offshore floating wind turbine[J]. National Renewable Energy Lab, 2007, 1: 1-208.
[19] ZUO H R, BI K M, HAO H.A state-of-the-art review on the vibration mitigation of wind turbines[J]. Renewable and sustainable energy reviews, 2020, 121: 109710.
PDF(2128 KB)

Accesses

Citation

Detail

Sections
Recommended

/