CLOSED-LOOP HAAR WAVELET TRANSFORM ENERGY MANAGEMENT METHOD OF HYBRID ENERGY STORAGE SYSTEM

Shen Yongpeng, Sun Songnan, Wang Yanfeng, Tang Yaohua, Li Yuanfeng

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (10) : 523-530.

PDF(2151 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2151 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (10) : 523-530. DOI: 10.19912/j.0254-0096.tynxb.2022-0976

CLOSED-LOOP HAAR WAVELET TRANSFORM ENERGY MANAGEMENT METHOD OF HYBRID ENERGY STORAGE SYSTEM

  • Shen Yongpeng1, Sun Songnan1, Wang Yanfeng1, Tang Yaohua2, Li Yuanfeng1
Author information +
History +

Abstract

Hybrid energy storage systems are widely used in new energy grid-connected, electric vehicles and other fields. Focused on the problem of Lithium-ion battery life attenuation caused by a high-frequency component in load power requirements, a closed-loop Haar wavelet transform energy management method is proposed. Firstly, the circuit structure of the hybrid energy storage system is introduced, and then based on the analysis of the Haar wavelet transform, the Haar wavelet transform energy management strategy and nonlinear proportional algorithm are proposed. Through the Haar wavelet transform, the separation of the high-frequency component and low-frequency component of the power demand is achieved, and the life attenuation caused by the high-frequency component is diminished. Then the nonlinear proportional algorithm is proposed to dynamically adjust the output current of the Lithium-ion battery to keep the DC bus voltage stable. Finally, experiments are conducted under simulated CLTC-P conditions. The experimental results show that the proposed closed-loop Haar wavelet transform energy management method can control the maximum deviation of the DC bus voltage within 2.75%, while effectively avoiding the impact of high-frequency components on the life of the Lithium-ion battery.

Key words

energy storage system / lithium-ion battery / capacitor / wavelet transform / energy management system / closed loop control system

Cite this article

Download Citations
Shen Yongpeng, Sun Songnan, Wang Yanfeng, Tang Yaohua, Li Yuanfeng. CLOSED-LOOP HAAR WAVELET TRANSFORM ENERGY MANAGEMENT METHOD OF HYBRID ENERGY STORAGE SYSTEM[J]. Acta Energiae Solaris Sinica. 2023, 44(10): 523-530 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0976

References

[1] 董海鹰, 贠韫韵, 汪宁渤, 等. 基于双重电价的电动汽车充放电两阶段优化调度策略[J]. 太阳能学报, 2021, 42(4): 115-124.
DONG H Y, YUN Y Y, WANG N B, et al.Two-stage dispatch optimization strategy for charging and discharging of electric vehicles based on double electricity price[J]. Acta energiae solaris sinica, 2021, 2021, 42(4): 115-124.
[2] 孙波, 董浩, 王璐, 等. 计及电动汽车需求响应的风储混合系统日前联合优化调度模型[J]. 太阳能学报, 2021, 42(4): 107-114.
SUN B, DONG H, WANG L, et al.Joint optimal scheduling model for wind-storage hybrid system considering demand response of electric vehicle[J]. Acta energiae solaris sinica, 2021, 42(4): 107-114.
[3] 刘东奇, 王耀南, 袁小芳. 电动汽车充放电与风力/火力发电系统的协同优化运行[J]. 电工技术学报, 2017, 32(3):18-26.
LIU D Q, WANG Y N, YUAN X F.Cooperative dispatch of large-scale electric vehicles with wind-thermal power generating system[J]. Transactions of China Electrotechnical Society, 2017, 32(3): 18-26.
[4] 马兰, 谢丽蓉, 叶林, 等. 基于混合储能双层规划模型的风电波动平抑策略[J]. 电网技术, 2022, 46(3):1016-1029.
MA L, XIE L R, YE L, et al.Wind power fluctuation suppression strategy based on hybrid energy storage bi-level programming model[J]. Power system technology, 2022, 46(3):1016-1029.
[5] 周雅夫, 史宏宇. 面向实车数据的电动汽车电池退役轨迹预测[J]. 太阳能学报, 2022, 43(5): 510-517.
ZHOU Y F, SHI H Y.Battery retirement trajectory prediction of electric vehicle based on real vehicle data[J]. Acta energiae solaris sinica, 2022, 43(5): 510-517.
[6] 续丹, 周佳辉, 王斌, 等. 电动汽车混合储能系统的自适应协同控制[J]. 西安交通大学学报, 2019, 53(4):38-43, 57.
XU D, ZHOU J H, WANG B, et al.An adaptive synergetic control strategy for hybrid energy storage system of electric vehicles[J]. Journal of Xi’An Jiaotong University, 2019, 53(4): 38-43, 57.
[7] 张宇涵, 杜贵平, 雷雁雄, 等. 直流微网混合储能系统控制策略现状及展望[J]. 电力系统保护与控制, 2021, 49(3):177-187.
ZHANG Y H, DU G P, LEI Y X, et al.Current status and prospects of control strategy for a DC micro grid hybrid energy storage system[J]. Power system protection and control, 2021, 49(3):177-187.
[8] ELDEEB H H, ELSAYED A T, LASHWAY C R, et al.Hybrid energy storage sizing and power splitting optimization for plug-in electric vehicles[J]. IEEE transactions on industry applications, 2019, 55(3): 2252-2262.
[9] UDDIN K, MOORE A D, BARAI A, et al.The effects of high frequency current ripple on electric vehicle battery performance[J]. Applied energy, 2016, 178: 142-154.
[10] UDDIN K, SOMERVILLE L, BARAI A, et al.The impact of high-frequency-high-current perturbations on film formation at the negative electro de-electrolyte interface[J]. Electrochimica acta, 2017, 233: 1-12.
[11] 申永鹏, 孙嵩楠, 刘东奇, 等. 车载混合储能系统Symlets小波变换能量管理方法[J]. 电力系统保护与控制, 2022, 50(6):74-81.
SHEN Y P, SUN S N, LIU D Q, et al.Symlets wavelet transform energy management method for a vehicle-mounted hybrid energy storage system[J]. Power system protection and control, 2022, 50(6): 74-81.
[12] 范其丽, 郑晓茜, 王璞, 等. 基于混合储能动态调节的独立混合微电网分布式协调控制[J]. 电力系统保护与控制, 2018, 46(7): 105-114.
FAN Q L, ZHENG X X, WANG P, et al.Decentralized control for autonomous hybrid microgrid with hybrid storage system dynamical regulating[J]. Power system protection and control, 2018, 46(7): 105-114.
[13] 杜祥伟, 沈艳霞, 李静. 基于模型预测控制的直流微网混合储能能量管理策略[J]. 电力系统保护与控制, 2020, 48(16): 69-75.
DU X W, SHEN Y X, LI J.Energy management strategy of DC microgrid hybrid energy storage based on model predictive control[J]. Power system protection and control, 2020, 48(16): 69-75.
[14] 陈亚爱, 林演康, 王赛, 等. 基于滤波分配法的混合储能优化控制策略[J]. 电工技术学报, 2020, 35(19):4009-4018.
CHEN Y A, LIN Y K, WANG S, et al.Optimal control strategy of hybrid energy storage based on filter allocation method[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4009-4018.
[15] LI H, RAVEY A, N’DIAYE A, et al. A review of energy management strategy for fuel cell hybrid electric vehicle[C]//2017 IEEE Vehicle Power And Propulsion Conference (VPPC). Belfort, France, 2018: 1-6.
[16] ZHAO Y L, WANG W D, XIANG C L, et al.Research and bench test of nonlinear model predictive control-based power allocation strategy for hybrid energy storage system[J]. IEEE access, 2018, 6(1): 70770-70787.
[17] KOLLMEYER P J, WOOTTON M, REIMERS J, et al.Real-time control of a full scale Li-ion battery and Li-ion capacitor hybrid energy storage system for a plug-in hybrid vehicle[J]. IEEE transactions on industry applications, 2019, 55(4): 4204-4214.
[18] 宋绍剑, 魏泽, 刘延扬, 等. 锂电池和超级电容混合电动汽车的能量管理[J]. 控制工程, 2019, 26(12): 2272-2277.
SONG S J, WEI Z, LIU Y Y, et al.Research on energy management for ultracapacitor/lithium battery hybrid electric vehicles[J]. Control engineering of China, 2019, 26(12): 2272-2277.
[19] TROVAO J P F, ROUX M A, MENARD E, et al. Energy- and power-split management of dual energy storage system for a three-wheel electric vehicle[J]. IEEE transactions on vehicular technology, 2017, 66(7): 5540-5550.
[20] SHEN J Y, KHALIGH A.Design and real-time controller implementation for a battery-ultracapacitor hybrid energy storage system[J]. IEEE transactions on industrial informatics, 2016, 12(5): 1910-1918.
[21] SHEN J Y, KHALIGH A.A supervisory energy management control strategy in a battery/ultracapacitor hybrid energy storage system[J]. IEEE transactions on transportation electrification, 2015, 1(3):223-231.
[22] LIU C L.A tutorial of the wavelet transform[R]. NTUEE, 2010: 22.
[23] 孙延奎. 小波分析及其工程应用[M]. 北京: 机械工业出版社, 2005.
SUN Y K.Wavelet analysis and its engineering application[M]. Beijing: China Machine Press, 2009.
[24] ZHANG X, MI C C, MASRUR A, et al.Wavelet-transform-based power management of hybrid vehicles with multiple on-board energy sources including fuel cell, battery and ultracapacitor[J]. Journal of power sources, 2008, 185(2): 1533-1543.
PDF(2151 KB)

Accesses

Citation

Detail

Sections
Recommended

/