RESEARCH ON DEGRADATION COST MODEL OF ENERGY STORAGE SYSTEM BASED ON PRICE DEMAND RESPONSE

Ma Bingtai, Liu Haitao, Hao Sipeng, Lu Heng, Zhang Chengyu

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (10) : 531-540.

PDF(2297 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2297 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (10) : 531-540. DOI: 10.19912/j.0254-0096.tynxb.2022-0980

RESEARCH ON DEGRADATION COST MODEL OF ENERGY STORAGE SYSTEM BASED ON PRICE DEMAND RESPONSE

  • Ma Bingtai1, Liu Haitao1,2, Hao Sipeng1,2, Lu Heng1, Zhang Chengyu1
Author information +
History +

Abstract

In order to improve the economic benefits of microgrids, it is necessary to fully consider the intermittent of new energy power generation and the high cost of hybrid energy storage system (HESS). This paper presents a microgrid double-layer predictive energy management system (EMS) model based on price demand response. Considering the impact of price on demand response, based on the degradation cost of HESS depth of charge and service life. The long-term cost of battery and supercapacitor is modeled and converted into real-time short-term cost. Based on the price demand response, the upper layer of the double-layer EMS minimizes the total operating cost, and the lower layer reduces the impact caused by the fluctuation of prediction error and change of load power, so as to maintain system stability. The example analysis shows the effectiveness of two-layer EMS from two aspects: different prediction time range and prediction accuracy. When considering the price demand response, the supercapacitor can quickly stabilize the load power change which caused by price adjustment. Simultaneously, it reduces the average battery degradation cost and operation cost of the system and improves the economic benefits of the system.

Key words

microgrid / energy storage / energy management system / price demand response / degradation cost / operation cost

Cite this article

Download Citations
Ma Bingtai, Liu Haitao, Hao Sipeng, Lu Heng, Zhang Chengyu. RESEARCH ON DEGRADATION COST MODEL OF ENERGY STORAGE SYSTEM BASED ON PRICE DEMAND RESPONSE[J]. Acta Energiae Solaris Sinica. 2023, 44(10): 531-540 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0980

References

[1] TANI A, CAMARA M B, DAKYO B.Energy management in the decentralized generation systems based on renewable energy-ultracapacitors and battery to compensate the wind/load power fluctuations[J]. IEEE transactions on industry applications, 2015, 51(2): 1817-1827.
[2] 侯祖锋, 陈建钿, 丘冠新, 等. 考虑分布式电源无功调节的配电网两级动态无功调度策略[J]. 电力系统保护与控制, 2022,50(6): 158-164.
HOU Z F, CHEN J D, QIU G X, et al.Two-level dynamic reactive power scheduling strategy in a distribution network considering reactive power regulation of distributed generation[J]. Power system protection and control, 2022, 50(6): 158-164.
[3] 张宇华, 李青松, 王丛, 等. 区域风光低频相关性互补与高频混合储能平抑的并网方法研究[J]. 中国电机工程学报, 2023, 43(4): 1492-1504.
ZHANG Y H, LI Q S, WANG C, et al.Grid-connected method of regional wind-solar low-frequency correlation complementation and high-frequency hybrid energy storage stabilization[J]. Proceedings of the CSEE, 2023, 43(4): 1492-1504.
[4] 张宇涵, 杜贵平, 雷雁雄, 等. 直流微网混合储能系统控制策略现状及展望[J]. 电力系统保护与控制, 2021,49(3): 177-187.
ZHANG Y H, DU G P, LEI Y X, et al.Current status and prospects of control strategy for a DC micro grid hybrid energy storage system[J]. Power system protection and control, 2021, 49(3): 177-187.
[5] 苏浩, 张建成, 冯冬涵, 等. 模块化混合储能系统及其能量管理策略[J]. 电力自动化设备, 2019, 39(1): 127-133, 140.
SU H, ZHANG J C, FENG D H, et al.Modular hybrid energy storage system and its energy management strategy[J]. Electric power automation equipment, 2019, 39(1): 127-133, 140.
[6] 李建林, 袁晓冬, 郁正纲, 等. 利用储能系统提升电网电能质量研究综述[J]. 电力系统自动化, 2019, 43(8): 15-24.
LI J L, YUAN X D, YU Z G, et al.Comments on power quality enhancement research for power grid by energy storage system[J]. Automation of electric power systems, 2019, 43(8): 15-24.
[7] 何俊强, 师长立, 马明, 等. 基于元模型优化算法的混合储能系统双层优化配置方法[J]. 电力自动化设备, 2020, 40(7): 157-167.
HE J Q, SHI C L, MA M, et al.Bi-level optimal configuration method of hybrid energy storage system based on meta model optimization algorithm[J]. Electric power automation equipment, 2020, 40(7): 157-167.
[8] 丁明, 吴杰, 张晶晶. 面向风电平抑的混合储能系统容量配置方法[J]. 太阳能学报, 2019, 40(3): 593-599.
DING M, WU J, ZHANG J J.Capacity optimization method of hybrid energy storage system for wind power smoothing[J]. Acta energiae solaris sinica, 2019, 40(3): 593-599.
[9] 蒲雨辰, 李奇, 陈维荣, 等. 计及最小使用成本及储能状态平衡的电氢混合储能孤岛直流微电网能量管理[J].电网技术, 2019, 43(3): 918-927.
PU Y C, LI Q, CHEN W R, et al.Energy management for islanded DC microgrid with hybrid electric-hydrogen energy storage system based on minimum utilization cost and energy storage state balance[J]. Power system technology, 2019, 43(3): 918-927.
[10] KE X D, LU N, JIN C L.Control and size energy storage systems for managing energy imbalance of variable generation resources[C]//2015 IEEE Power & Energy Soliety General Meeting. Denver, CO, USA, 2015: 1.
[11] 马海勃. 高可再生能源渗透率下微电网的能量管理优化策略研究[D]. 广州: 广东工业大学, 2020.
MA H B.Research on energy management optimization strategy for microgrids with high-penetration renewables[D]. Guangzhou: Guangdong University of Technology, 2020.
[12] 张有兵, 任帅杰, 杨晓东, 等. 考虑价格型需求响应的独立型微电网优化配置[J]. 电力自动化设备, 2017, 37(7): 55-62.
ZHANG Y B, REN S J, YANG X D, et al.Optimal configuration considering price-based demand response for stand-alone microgrid[J]. Electric power automation equipment, 2017, 37(7): 55-62.
[13] 高佳, 肖迎群, 马蕊, 等. 考虑不确定性价格型需求响应的多源微网运行优化[J]. 现代电力, 2020, 37(4): 425-433.
GAO J, XIAO Y Q, MA R, et al.Multi-source micro-grid operation optimization considering uncertain electricity price demand response[J]. Modern electric power, 2020, 37(4): 425-433.
[14] 闫梦阳, 李华强, 王俊翔, 等. 计及综合需求响应不确定性的园区综合能源系统优化运行模型[J]. 电力系统保护与控制, 2022, 50(2): 163-175.
YAN M Y, LI H Q, WANG J X, et al.Optimal operation model of a park integrated energy system considering uncertainty of integrated demand response[J]. Power system protection and control, 2022, 50(2): 163-175.
[15] 孙丛丛, 王致杰, 江秀臣, 等. 计及需求响应的并网型微电网协同优化策略[J]. 电力系统及其自动化学报, 2018, 30(1): 30-37.
SUN C C, WANG Z J, JIANG X C, et al.Coordinated optimization strategy for grid-connected microgrid considering demand response[J]. Proceedings of the CSU-EPSA, 2018, 30(1): 30-37.
[16] 马骏超, 黄弘扬, 楼伯良, 等. 分时电价背景下综合能源需求响应优化建模[J]. 电力工程技术, 2020, 39(5): 99-106.
MA J C, HUANG H Y, LOU B L, et al.Optimal modeling of integrated energy demand response under time-shared electricity price[J]. Electric power engineering technology, 2020, 39(5): 99-106.
[17] 孔晓磊. 计及需求响应的微型能源系统定价模型研究[D]. 秦皇岛: 燕山大学, 2019.
KONG X L.Research on pricing model of micro energy system considering demand response[D]. Qinhuangdao: Yan shan University, 2019.
[18] JU C Q, WANG P, GOEL L et al. A two-layer energy management system for microgrids with hybrid energy storage considering degradation costs[J]. IEEE transactions on smart grid, 2018, 9(6): 6047-6057.
[19] FARZIN H, FOTUHI FIRUZABAD M, MOEINI-AGHTAIE A M. A practical scheme to involve degradation cost of lithium-ion batteries in vehicle-to-grid applications[J]. IEEE transactions on sustainable energy, 2016, 7(4): 1730-1738.
[20] HAN S, AKI H, HAN S.A practical battery wear model for electric vehicle charging applications[C]//2013 IEEE Power & Energy Society General Meeting. Vancouver, BC, Canada, 2013: 1-5.
PDF(2297 KB)

Accesses

Citation

Detail

Sections
Recommended

/