POWER OPTIMIZATION LQR CONTROL FOR WAVE POWER SYSTEM CONSIDERING MODEL MISMATCH

Lin Bingjun, Yang Junhua, Wu Fantong, Liang Huigai, Qiu Dalei

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (1) : 389-394.

PDF(2352 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2352 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (1) : 389-394. DOI: 10.19912/j.0254-0096.tynxb.2022-0998

POWER OPTIMIZATION LQR CONTROL FOR WAVE POWER SYSTEM CONSIDERING MODEL MISMATCH

  • Lin Bingjun, Yang Junhua, Wu Fantong, Liang Huigai, Qiu Dalei
Author information +
History +

Abstract

In order to reduce the impact of complex sea conditions on the wave power system, it is necessary to improve the objective value function and design a linear quadratic optimal regulator to constrain the motion state of the system and improve the ability to capture wave energy. By adjusting the weight matrix, the optimal feedback gain is calculated and the ideal q-axis current is obtained, and the space vector control strategy is used to track and control it to balance the relationship between the physical constraints of the system and the power capture; When the model is mismatched, according to the displacement difference between the ideal model and the actual device, the RBF robust controller is designed based on the HJI theory to compensate for the mismatched motion state and power of the system; The simulation results show that the proposed control strategy has good dynamic performance and strong robustness under irregular excitation force, and while satisfying the physical constraints of the system, it can effectively improve the wave-energy capture ability, and compensate the power reduced by the system mismatch.

Key words

wave power / error compensation / wave energy conversion / permanent magnet synchronous linear motor / linear quadratic regulator (LQR)

Cite this article

Download Citations
Lin Bingjun, Yang Junhua, Wu Fantong, Liang Huigai, Qiu Dalei. POWER OPTIMIZATION LQR CONTROL FOR WAVE POWER SYSTEM CONSIDERING MODEL MISMATCH[J]. Acta Energiae Solaris Sinica. 2024, 45(1): 389-394 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0998

References

[1] 洪岳, 潘剑飞, 刘云, 等. 直驱波浪能发电系统综述[J]. 中国电机工程学报, 2019, 39(7): 1886-1900.
HONG Y, PAN J F, LIU Y, et al.A review on linear generator based wave energy conversion systems[J]. Proceedings of the CSEE, 2019, 39(7): 1886-1900.
[2] 肖曦, 摆念宗, 康庆, 等. 波浪发电系统发展及直驱式波浪发电系统研究综述[J]. 电工技术学报, 2014, 29(3): 1-11.
XIAO X, BAI N Z, KANG Q, et al.A review of the development of wave power system and the research on direct-drive wave power system[J]. Transactions of China Electrotechnical Society, 2014, 29(3): 1-11.
[3] 张亚群, 盛松伟, 游亚戈, 等. 波浪能发电技术应用发展现状及方向[J]. 新能源进展, 2019, 7(4): 374-378.
ZHANG Y Q, SHENG S W, YOU Y G, et al.Development status and application direction of wave energy generation technology[J]. Advances in new and renewable energy, 2019, 7(4): 374-378.
[4] AHAMED R, MCKEE K, HOWARD I.Advancements of wave energy converters based on power take off (PTO) systems: a review[J]. Ocean engineering, 2020, 204: 107248.
[5] 黄宝洲, 杨俊华, 沈辉, 等. 波浪发电系统无速度传感器功率优化控制[J]. 智慧电力, 2019, 47(1): 34-40.
HUANG B Z, YANG J H, SHEN H, et al.Power optimization control of speed sensorless for wave power generation system[J]. Smart power, 2019, 47(1): 34-40.
[6] 肖晓龙, 肖龙飞, 杨立军. 串联直驱浮子式波浪能发电装置能量捕获研究[J]. 太阳能学报, 2018, 39(2): 398-405.
XIAO X L, XIAO L F, YANG L J.Energy harvesting study of series direct driven float wave energy converter[J]. Acta energiae solaris sinica, 2018, 39(2): 398-405.
[7] 黄宝洲, 杨俊华, 沈辉, 等. 基于FFT的直驱式波浪发电系统功率优化控制[J]. 太阳能学报, 2021, 42(3): 206-213.
HUANG B Z, YANG J H, SHEN H, et al.Power optimization control of direct drive wave power system based on FFT[J]. Acta energiae solaris sinica, 2021, 42(3): 206-213.
[8] 杨金明, 黄伟. 直驱式波浪发电系统的状态切换控制方法[J]. 华南理工大学学报(自然科学版), 2021, 49(2): 1-8.
YANG J M, HUANG W.State switching control method for direct-drive wave power generation system[J]. Journal of South China University of Technology (natural science edition), 2021, 49(2): 1-8.
[9] FAEDO N, OLAYA S, RINGWOOD J V.Optimal control, MPC and MPC-like algorithms for wave energy systems: an overview[J]. IFAC journal of systems and control, 2017, 1: 37-56.
[10] 卢思灵, 杨俊华, 沈辉, 等. 直驱式波浪发电系统的经济模型预测控制[J]. 电测与仪表, 2021, 58(3): 131-138.
LU S L, YANG J H, SHEN H, et al.Economic model predictive control of direct-drive wave power generation systems[J]. Electrical measurement & instrumentation, 2021, 58(3): 131-138.
[11] ZHAN S Y, LI G, NA J, et al.Feedback noncausal model predictive control of wave energy converters[J]. Control engineering practice, 2019, 85: 110-120.
[12] ZOU S Y, ABDELKHALIK O.Time-varying linear quadratic Gaussian optimal control for three-degree-of-freedom wave energy converters[J]. Renewable energy, 2020, 149: 217-225.
[13] 孙宇新, 唐敬伟, 朱熀秋, 等. 基于HJI理论的无轴承异步电机悬浮系统滑模鲁棒控制[J]. 振动与冲击, 2019, 38(4): 50-55.
SUN Y X, TANG J W, ZHU H Q, et al.Sliding mode robust control of a bearingless induction motor suspension system based on the HJI theory[J]. Journal of vibration and shock, 2019, 38(4): 50-55.
[14] WANG Z C, LUAN F, WANG N G.An improved model predictive control method for wave energy converter with sliding mode control[J]. Ocean engineering, 2021, 240: 109881.
[15] ZHANG Y, LI G.Non-causal linear optimal control of wave energy converters with enhanced robustness by sliding mode control[J]. IEEE transactions on sustainable energy, 2020, 11(4): 2201-2209.
[16] 王超凡, 杨俊华, 罗琦, 等. 直驱式波浪发电系统功率优化鲁棒控制[J]. 太阳能学报, 2023, 44(8): 550-555.
WANG C F, YANG J H, LUO Q, et al.Power optimization and robust control of direct-drive wave power system[J]. Acta energiae solaris sinica, 2023, 44(8): 550-555.
[17] SUN T, NIELSEN S R K. Stochastic optimal control of a heave point wave energy converter based on a modified LQG approach[J]. Ocean engineering, 2018, 154: 357-366.
[18] VAN DER SCHAFT A J. L2/-gain analysis of nonlinear systems and nonlinear state-feedback H/sub infinity/control[J]. IEEE transactions on automatic control, 1992, 37(6): 770-784.
PDF(2352 KB)

Accesses

Citation

Detail

Sections
Recommended

/